
Zero-overhead abstractions in Haskell using Staging
Haskell Love Conference

Andres Löh
2020-07-31

Well-Typed
The Haskell Consultants

A simple program

Binary search trees:

data BST a =
Node Int a (BST a) (BST a)

| Leaf

“Standard” lookup:

lookup :: Int -> BST a -> Maybe a
lookup _ Leaf = Nothing
lookup i (Node j a l r) =
case compare i j of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

Well-Typed

A simple program

Binary search trees:

data BST a =
Node Int a (BST a) (BST a)

| Leaf

“Standard” lookup:

lookup :: Int -> BST a -> Maybe a
lookup _ Leaf = Nothing
lookup i (Node j a l r) =
case compare i j of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

Well-Typed

A simple program (continued)

A statically known table (tree):

table :: BST String
table =
Node 5 "b"
(Node 3 "a" Leaf Leaf)
(Node 7 "c" Leaf Leaf)

5 7→ "b"

3 7→ "a" 7 7→ "c"

A specialised version of lookup :

lookupTable :: Int -> Maybe String
lookupTable i = lookup i table

Will the tree be optimised away?

Well-Typed

A simple program (continued)

A statically known table (tree):

table :: BST String
table =
Node 5 "b"
(Node 3 "a" Leaf Leaf)
(Node 7 "c" Leaf Leaf)

5 7→ "b"

3 7→ "a" 7 7→ "c"

A specialised version of lookup :

lookupTable :: Int -> Maybe String
lookupTable i = lookup i table

Will the tree be optimised away?

Well-Typed

A simple program (continued)

A statically known table (tree):

table :: BST String
table =
Node 5 "b"
(Node 3 "a" Leaf Leaf)
(Node 7 "c" Leaf Leaf)

5 7→ "b"

3 7→ "a" 7 7→ "c"

A specialised version of lookup :

lookupTable :: Int -> Maybe String
lookupTable i = lookup i table

Will the tree be optimised away?

Well-Typed

No

Core (simplified)

lookupTable = \ i_a1fA -> lookup i_a1fA table

lookup
= \ @a_a1gw ds_d1ml ds1_d1mm -> case ds1_d1mm of {

Node j_auA a1_auB l_auC r_auD ->
case ds_d1ml of wild1_a1mS {I# x#_a1mT ->
case j_auA of {I# y#_a1mW ->
case <# x#_a1mT y#_a1mW of {
__DEFAULT ->
case ==# x#_a1mT y#_a1mW of {
__DEFAULT -> lookup wild1_a1mS r_auD;
1# -> Just a1_auB

};
1# -> lookup wild1_a1mS l_auC

}}};
Leaf -> Nothing

}

Well-Typed

Why not?

▶ Recursive functions are never inlined.
▶ There is fusion for lists (and a handful of other types) . . .
▶ . . . but not for a tree type we just defined.

Well-Typed

What if we want to exploit the static table?

Option 1: hand-unroll the code

lookupTable :: Int -> Maybe String
lookupTable i =
case compare i 5 of
LT -> case compare i 3 of

LT -> Nothing
EQ -> Just "a"
GT -> Nothing

EQ -> Just "b"
GT -> case compare i 7 of

LT -> Nothing
EQ -> Just "c"
GT -> Nothing

This is getting boring quickly . . .

Well-Typed

Option 1: hand-unroll the code

lookupTable :: Int -> Maybe String
lookupTable i =
case compare i 5 of
LT -> case compare i 3 of

LT -> Nothing
EQ -> Just "a"
GT -> Nothing

EQ -> Just "b"
GT -> case compare i 7 of

LT -> Nothing
EQ -> Just "c"
GT -> Nothing

This is getting boring quickly . . .

Well-Typed

Option 1: hand-unroll the code

lookupTable :: Int -> Maybe String
lookupTable i =
case compare i 5 of
LT -> case compare i 3 of

LT -> Nothing
EQ -> Just "a"
GT -> Nothing

EQ -> Just "b"
GT -> case compare i 7 of

LT -> Nothing
EQ -> Just "c"
GT -> Nothing

This is getting boring quickly . . .

Well-Typed

Option 2: Type-level programming

In Haskell, we often move things that should be done statically into the types . . .

▶ Promote BST .
▶ Define Lookup as a type family?
▶ But we don’t know the number statically . . .
▶ . . . thus we have to convert it using someNatVal or similar . . .
▶ . . . and everything gets more complicated . . .
▶ . . . and will this actually even end up being more efficient??

Well-Typed

Option 2: Type-level programming

In Haskell, we often move things that should be done statically into the types . . .

▶ Promote BST .
▶ Define Lookup as a type family?
▶ But we don’t know the number statically . . .
▶ . . . thus we have to convert it using someNatVal or similar . . .
▶ . . . and everything gets more complicated . . .
▶ . . . and will this actually even end up being more efficient??

Well-Typed

Option 3: Template Haskell

▶ Has a reputation for being low-level, dangerous, and difficult to maintain.
▶ Is untyped, and therefore difficult to use.

Primary use case: eliminating boilerplate.

Template Meta-programming for Haskell
Tim Sheard

OGI School of Science & Engineering

Oregon Health & Science University
sheard@cse.ogi.edu Simon Peyton Jones

Microsoft Research Ltd
simonpj@microsoft.com

Abstract
We propose a new extension to the purely functional programming

language Haskell that supports compile-time meta-programming.

The purpose of the system is to support the algorithmic construction

of programs at compile-time.
The ability to generate code at compile time allows the program-

mer to implement such features as polytypic programs, macro-like

expansion, user directed optimization (such as inlining), and the

generation of supporting data structures and functions from exist-

ing data structures and functions.
Our design is being implemented in the Glasgow Haskell Compiler,

ghc.
This version is very slightly modified from the Haskell Workshop

2002 publication; a couple of typographical errors are fixed in Fig-

ure 2.

Categories and Subject Descriptors

D.3.3 [Software]: Programming Languages
General TermsLanguages, Design

KeywordsMeta programming, templates1 Introduction“Compile-time program optimizations are similar to po-

etry: more are written than are actually published in

commercial compilers. Hard economic reality is that

many interesting optimizations have too narrow an au-

dience to justify their cost... An alternative is to al-

low programmers to define their own compile-time op-

timizations. This has already happened accidentally for

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Haskell Workshop October 3, 2002, Pittsburgh; reproduced here with permission

Copyright 2002 ACM 1-58113-415-0/01/0009 ...$5.00

C++, albeit imperfectly... [It is] obvious to functional

programmers what the committee did not realize until

later: [C++] templates are a functional language evalu-

ated at compile time...” [12].
Robinson’s provocative paper identifies C++ templates as a ma-

jor, albeit accidental, success of the C++ language design. De-

spite the extremely baroque nature of template meta-programming,

templates are used in fascinating ways that extend beyond the

wildest dreams of the language designers [1]. Perhaps surprisingly,

in view of the fact that templates are functional programs, func-

tional programmers have been slow to capitalize on C++’s success;

while there has been a recent flurry of work on run-time meta-

programming, much less has been done on compile-time meta-

programming. The Scheme community is a notable exception, as

we discuss in Section 10.In this paper, therefore, we present the design of a compile-time

meta-programming extension of Haskell, a strongly-typed, purely-

functional language. The purpose of the extension is to allow pro-

grammers to compute some parts of their program rather than write

them, and to do so seamlessly and conveniently. The extension can

be viewed both as a template system for Haskell (à la C++), as well

as a type-safe macro system. We make the following new contribu-

tions:

• We describe how a quasi-quotation mechanism for a language

with binders can be precisely described by a translation into

a monadic computation. This allows the use of a gensym-

like operator even in a purely functional language like Haskell

(Sections 6.1 and 9).• A staged type-checking algorithm co-routines between type

checking and compile-time computations. This staging is use-

ful, because it supports code generators, which if written as

ordinary programs, would need to be given dependent types.

The language is therefore expressive and simple (no depen-

dent types), but still secure, because all run-time computations

(either hand-written or computed) are always type-checked

before they are executed (Section 7).

• Reification of programmer-written components is supported,

so that computed parts of the program can analyze the struc-

ture of user-written parts. This is particularly useful for build-

ing “boilerplate” code derived from data type declarations

(Sections 5 and 8.1).In addition to these original contributions, we have synthesized pre-

vious work into a coherent system that provides new capabilities.

These include
• The representation of code by an ordinary algebraic datatype

makes it possible use Haskell’s existing mechanisms (case

Haskell 2002

Well-Typed

Option 3: Template Haskell

▶ Has a reputation for being low-level, dangerous, and difficult to maintain.
▶ Is untyped, and therefore difficult to use.

Primary use case: eliminating boilerplate.

Well-Typed

Option 4: Typed Template Haskell

Amuch more limited variant of Template Haskell.

MetaML: Multi-Stage Programming with Explicit AnnotationsWalid Taha & Tim SheardOregon Graduate Institute of Science and Technologyfwalidt,sheardg@cse.ogi.edu �AbstractWe introduce MetaML, a practically-motivated, statically-typed multi-stage programming language. MetaML allowsthe programmer to construct, combine, and execute codefragments in a type-safe manner. Code fragments can con-tain free variables, but we ensure that the language obeysthe static-scoping principle. MetaML performs type-checkingfor all stages once and for all before the execution of the �rststage. From a software engineering point of view, this meansthat our programs never generate untypable programs.A thesis of this paper is that multi-stage languages areuseful as programming languages in their own right, thatthey supply a sound basis for high-level program genera-tion technology, and that they should support features thatmake it possible for programmers to write staged computa-tions without signi�cantly changing their normal program-ming style. To illustrate this we provide a simple three stageexample, and an extended two-stage example elaborating anumber of practical issues.The design of MetaML was based on two main princi-ples that we identi�ed as fundamental for high-level programgeneration, namely, cross-stage persistence and cross-stagesafety. We present these principles, explain the technicalproblems they give rise to, and how we deal with these prob-lems in our implementation.1 IntroductionHigh-level program generators can increase the e�ciency,productivity, reliability, and quality of software systems [27,23, 24]. Despite the numerous examples of program genera-tors, almost all these systems deal with the construction ofprogram fragments using ad-hoc techniques.Our thesis is that a well-designed multi-stage program-ming language supplies a sound basis for high-level programgeneration technology. Our goal was to design a languagethat allows the user to construct, combine, and evaluateprograms at a higher level of abstraction than the classic\programs-as-strings" level. Such a language should alsomake the formal veri�cation of generated-program proper-ties easier.�The research reported in this paper was supported by the USAFAir Materiel Command, contract # F19628-93-C-0069, and NSFGrant IRI-9625462. An earlier version of this paper appeared in TheProceedings of the ACM SIGPLAN Symposium on Partial Evaluationand Semantics Based Program Manipulation. pp 203-217. Amster-dam, The Netherlands, June 12-13, 1997.

1.1 Multi-Stage Programs and LanguagesThe concept of a stage arises naturally in a wide varietyof situations. For a compiled language, the execution of aprogram involves two distinct stages: compile-time, and run-time. Three distinct stages appear in the context of programgeneration: generation, compilation, and execution. For ex-ample, the Yacc parser generator �rst reads a grammar andgenerates C code; second, this program is compiled; third,the user runs the object code.A multi-stage program is one that involves the gener-ation, compilation, and execution of code, all inside thesame process. Multi-stage languages express multi-stageprograms. Multi-stage programming is important becauseit addresses the need for general purpose solutions which donot pay run-time interpretive overheads. This is the purposeof program staging and it can be highly e�ective as demon-strated in many studies [3, 18, 17, 9, 13, 26, 38, 51]. Re-cently, multi-stage languages have also been proposed as in-termediate representations for partial evaluation [14, 10, 11],and a formal foundation for run-time code generation [7].However, there has generally been little support for writ-ingmulti-stage programs directly in high level programminglanguages such as SML or Haskell.1.2 MetaMLMetaML is an SML-like language with special constructsfor multi-stage programming. MetaML is tightly integratedin that programs are constructed, combined, compiled, andexecuted all under a single paradigm. Programs are rep-resented as abstract syntax trees in a manner that avoidsgoing through string representations. This makes verifyingsemantic properties of multi-stage programs possible. Thekey features of MetaML are as follows:� Four distinct staging annotations, which we believe area good basis for general-purpose multi-stage program-ming.� A multi-stage program is type-checked once and forall before it begins executing, ensuring the safety ofall computations.� Cross-stage persistence: A variable bound in a partic-ular stage, will be available in futures stages.� Cross-stage safety: An input �rst available in a par-ticular stage cannot be used at an earlier stage.� Static scoping of variables in code fragments.

PEPM 1997

How can this possibly be good?

▶ Typed.
▶ High-level interface.
▶ No IO at compile time.
▶ Generates only expressions, never top-level declarations.
▶ Can still access the power of normal TH underneath when really needed

(akin to unsafePerformIO).

Primary use case: reliable performance!

Well-Typed

Option 4: Typed Template Haskell

Amuch more limited variant of Template Haskell.

MetaML: Multi-Stage Programming with Explicit AnnotationsWalid Taha & Tim SheardOregon Graduate Institute of Science and Technologyfwalidt,sheardg@cse.ogi.edu �AbstractWe introduce MetaML, a practically-motivated, statically-typed multi-stage programming language. MetaML allowsthe programmer to construct, combine, and execute codefragments in a type-safe manner. Code fragments can con-tain free variables, but we ensure that the language obeysthe static-scoping principle. MetaML performs type-checkingfor all stages once and for all before the execution of the �rststage. From a software engineering point of view, this meansthat our programs never generate untypable programs.A thesis of this paper is that multi-stage languages areuseful as programming languages in their own right, thatthey supply a sound basis for high-level program genera-tion technology, and that they should support features thatmake it possible for programmers to write staged computa-tions without signi�cantly changing their normal program-ming style. To illustrate this we provide a simple three stageexample, and an extended two-stage example elaborating anumber of practical issues.The design of MetaML was based on two main princi-ples that we identi�ed as fundamental for high-level programgeneration, namely, cross-stage persistence and cross-stagesafety. We present these principles, explain the technicalproblems they give rise to, and how we deal with these prob-lems in our implementation.1 IntroductionHigh-level program generators can increase the e�ciency,productivity, reliability, and quality of software systems [27,23, 24]. Despite the numerous examples of program genera-tors, almost all these systems deal with the construction ofprogram fragments using ad-hoc techniques.Our thesis is that a well-designed multi-stage program-ming language supplies a sound basis for high-level programgeneration technology. Our goal was to design a languagethat allows the user to construct, combine, and evaluateprograms at a higher level of abstraction than the classic\programs-as-strings" level. Such a language should alsomake the formal veri�cation of generated-program proper-ties easier.�The research reported in this paper was supported by the USAFAir Materiel Command, contract # F19628-93-C-0069, and NSFGrant IRI-9625462. An earlier version of this paper appeared in TheProceedings of the ACM SIGPLAN Symposium on Partial Evaluationand Semantics Based Program Manipulation. pp 203-217. Amster-dam, The Netherlands, June 12-13, 1997.

1.1 Multi-Stage Programs and LanguagesThe concept of a stage arises naturally in a wide varietyof situations. For a compiled language, the execution of aprogram involves two distinct stages: compile-time, and run-time. Three distinct stages appear in the context of programgeneration: generation, compilation, and execution. For ex-ample, the Yacc parser generator �rst reads a grammar andgenerates C code; second, this program is compiled; third,the user runs the object code.A multi-stage program is one that involves the gener-ation, compilation, and execution of code, all inside thesame process. Multi-stage languages express multi-stageprograms. Multi-stage programming is important becauseit addresses the need for general purpose solutions which donot pay run-time interpretive overheads. This is the purposeof program staging and it can be highly e�ective as demon-strated in many studies [3, 18, 17, 9, 13, 26, 38, 51]. Re-cently, multi-stage languages have also been proposed as in-termediate representations for partial evaluation [14, 10, 11],and a formal foundation for run-time code generation [7].However, there has generally been little support for writ-ingmulti-stage programs directly in high level programminglanguages such as SML or Haskell.1.2 MetaMLMetaML is an SML-like language with special constructsfor multi-stage programming. MetaML is tightly integratedin that programs are constructed, combined, compiled, andexecuted all under a single paradigm. Programs are rep-resented as abstract syntax trees in a manner that avoidsgoing through string representations. This makes verifyingsemantic properties of multi-stage programs possible. Thekey features of MetaML are as follows:� Four distinct staging annotations, which we believe area good basis for general-purpose multi-stage program-ming.� A multi-stage program is type-checked once and forall before it begins executing, ensuring the safety ofall computations.� Cross-stage persistence: A variable bound in a partic-ular stage, will be available in futures stages.� Cross-stage safety: An input �rst available in a par-ticular stage cannot be used at an earlier stage.� Static scoping of variables in code fragments.

PEPM 1997

The Internet, 2013

How can this possibly be good?

▶ Typed.
▶ High-level interface.
▶ No IO at compile time.
▶ Generates only expressions, never top-level declarations.
▶ Can still access the power of normal TH underneath when really needed

(akin to unsafePerformIO).

Primary use case: reliable performance!

Well-Typed

Option 4: Typed Template Haskell

Amuch more limited variant of Template Haskell.

How can this possibly be good?

▶ Typed.
▶ High-level interface.
▶ No IO at compile time.
▶ Generates only expressions, never top-level declarations.
▶ Can still access the power of normal TH underneath when really needed

(akin to unsafePerformIO).

Primary use case: reliable performance!

Well-Typed

Option 4: Typed Template Haskell

Amuch more limited variant of Template Haskell.

How can this possibly be good?

▶ Typed.
▶ High-level interface.
▶ No IO at compile time.
▶ Generates only expressions, never top-level declarations.
▶ Can still access the power of normal TH underneath when really needed

(akin to unsafePerformIO).

Primary use case: reliable performance!

Well-Typed

Staging constructs

Quotes

e :: t

[|| e ||] :: Code t

Prevent reduction, build an AST.

Splices

e :: Code t

$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Well-Typed

Staging constructs

Quotes

e :: t

[|| e ||] :: Code t

Prevent reduction, build an AST. type Code a = Q (TExp a)

Splices

e :: Code t

$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Well-Typed

Staging constructs

Quotes

e :: t

[|| e ||] :: Code t

Prevent reduction, build an AST.

Splices

e :: Code t

$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Well-Typed

Staging constructs

Quotes

e :: t

[|| e ||] :: Code t

Prevent reduction, build an AST.

Splices

e :: Code t

$$e :: t

Re-enable reduction, insert into an AST.

Top-level splices insert into the current module.

Well-Typed

Example: Staging lookup

lookup :: Int -> BST a -> Maybe a
lookup _ Leaf = Nothing
lookup i (Node j a l r) =
case compare i j of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

The staged function is supposed to be invoked in a top-level splice, and thus to run at
compilation time . . .

Well-Typed

Example: Staging lookup

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = Nothing
lookup i (Node j a l r) =
case compare i j of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

Therefore, dynamic arguments are of Code type.

Well-Typed

Example: Staging lookup

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = [|| Nothing ||]
lookup i (Node j a l r) =
case compare i j of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

Well-Typed

Example: Staging lookup

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = [|| Nothing ||]
lookup i (Node j a l r) =
[||
case compare i j of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

||]

Well-Typed

Example: Staging lookup

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = [|| Nothing ||]
lookup i (Node j a l r) =
[||
case compare $$i j of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

||]

Well-Typed

Example: Staging lookup

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = [|| Nothing ||]
lookup i (Node j a l r) =
[||
case compare $$i $$(liftTyped j) of
LT -> lookup i l
EQ -> Just a
GT -> lookup i r

||]

class Lift a where
liftTyped :: a -> Code a

instance Lift Int

Well-Typed

Example: Staging lookup

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = [|| Nothing ||]
lookup i (Node j a l r) =
[||
case compare $$i $$(liftTyped j) of
LT -> $$(lookup i l)
EQ -> Just a
GT -> $$(lookup i r)

||]

Well-Typed

Example: Staging lookup

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = [|| Nothing ||]
lookup i (Node j a l r) =
[||
case compare $$i $$(liftTyped j) of
LT -> $$(lookup i l)
EQ -> Just $$a
GT -> $$(lookup i r)

||]

Note that stripping the staging constructs yields the original code.

Well-Typed

Using staged lookup

table :: BST (Code String)
table =
Node 5 [|| "b" ||]
(Node 3 [|| "a" ||] Leaf Leaf)
(Node 7 [|| "c" ||] Leaf Leaf)

lookupTable :: Int -> Maybe String
lookupTable i =
$$(lookup [|| i ||] table)

Well-Typed

Core again (simplified)

lookupTable = \ w_s4U0 ->
case w_s4U0 of {I# ww1_s4U3 -> $wlookupTable ww1_s4U3}

$wlookupTable = \ ww_s4U3 ->
case <# ww_s4U3 5# of {
__DEFAULT ->
case ww_s4U3 of wild_Xf {
__DEFAULT ->
case <# wild_Xf 7# of {
__DEFAULT ->
case wild_Xf of {
__DEFAULT -> Nothing;
7# -> lookupTable7

};
1# -> Nothing

};
5# -> lookupTable4

};
1# ->
case <# ww_s4U3 3# of {
__DEFAULT ->
case ww_s4U3 of {
__DEFAULT -> Nothing;
3# -> lookupTable1

};
1# -> Nothing

}
}

lookupTable1 = Just lookupTable2
lookupTable2 = unpackCString# lookupTable3
lookupTable3 = "a"#

lookupTable4 = Just lookupTable5
lookupTable5 = unpackCString# lookupTable5
lookupTable6 = "b"#

lookupTable7 = Just lookupTable8
lookupTable8 = unpackCString# lookupTable9
lookupTable9 = "c"#

▶ Equivalent to hand-unrolled code.
▶ Not relying substantially on GHC’s

optimiser.
▶ (But still subject to optimisation.)

Well-Typed

Core again (simplified)

lookupTable = \ w_s4U0 ->
case w_s4U0 of {I# ww1_s4U3 -> $wlookupTable ww1_s4U3}

$wlookupTable = \ ww_s4U3 ->
case <# ww_s4U3 5# of {
__DEFAULT ->
case ww_s4U3 of wild_Xf {
__DEFAULT ->
case <# wild_Xf 7# of {
__DEFAULT ->
case wild_Xf of {
__DEFAULT -> Nothing;
7# -> lookupTable7

};
1# -> Nothing

};
5# -> lookupTable4

};
1# ->
case <# ww_s4U3 3# of {
__DEFAULT ->
case ww_s4U3 of {
__DEFAULT -> Nothing;
3# -> lookupTable1

};
1# -> Nothing

}
}

lookupTable1 = Just lookupTable2
lookupTable2 = unpackCString# lookupTable3
lookupTable3 = "a"#

lookupTable4 = Just lookupTable5
lookupTable5 = unpackCString# lookupTable5
lookupTable6 = "b"#

lookupTable7 = Just lookupTable8
lookupTable8 = unpackCString# lookupTable9
lookupTable9 = "c"#

▶ Equivalent to hand-unrolled code.
▶ Not relying substantially on GHC’s

optimiser.
▶ (But still subject to optimisation.)

Well-Typed

Another example: Routing in a web server

Example routes

/login
/language
/language/:lid
/language/:lid/new
/language/:lid/feature
/language/:lid/feature/:fid
/language/:lid/feature/:fid/since

. . .

We are interested in efficient dispatch of a request to a handler.

Well-Typed

Example routes

/login
/language
/language/:lid
/language/:lid/new
/language/:lid/feature
/language/:lid/feature/:fid
/language/:lid/feature/:fid/since

. . .

We are interested in efficient dispatch of a request to a handler.

Well-Typed

Simplified scenario

data Route =
Static Text Route

| Capture Route
| End

data Router

at :: Route -> Handler -> Router
instance Semigroup Router

type Request = [Text]
type Handler = [Text] -> Response
type Response = Text

route :: Router -> Request -> Handler

We assume the Router to be statically known.

Well-Typed

Simplified scenario

data Route =
Static Text Route

| Capture Route
| End

data Router

at :: Route -> Handler -> Router
instance Semigroup Router

type Request = [Text]
type Handler = [Text] -> Response
type Response = Text

route :: Router -> Request -> Handler

We assume the Router to be statically known.

Well-Typed

Simplified scenario

data Route =
Static Text Route

| Capture Route
| End

data Router

at :: Route -> Handler -> Router
instance Semigroup Router

type Request = [Text]
type Handler = [Text] -> Response
type Response = Text

route :: Router -> Request -> Handler

We assume the Router to be statically known.

Well-Typed

Staging routers

data Router = MkRouter [(Route, Code Handler)]

Build a suitable data structure:
data RouteTree =
RouteTreeNode
(Map Text RouteTree) -- dispatch on topmost path component
(Maybe RouteTree) -- routes that capture this component
(Code Handler) -- possibly failing handler for current path

buildRouteTree :: Router -> RouteTree

Well-Typed

Staging routers

data Router = MkRouter [(Route, Code Handler)]

Build a suitable data structure:
data RouteTree =
RouteTreeNode
(Map Text RouteTree) -- dispatch on topmost path component
(Maybe RouteTree) -- routes that capture this component
(Code Handler) -- possibly failing handler for current path

buildRouteTree :: Router -> RouteTree

Well-Typed

Staging routers

Use the tree to generate code:

routeViaTree :: RouteTree -> Code Request -> Code [Text] -> Code Response
routeViaTree (RouteTreeNode statics captures handler) req args =
[||
case $$req of
[] -> $$handler $$args
x : xs -> $$(go (toList statics) captures [|| x ||] [|| xs ||])

||]
where

Well-Typed

Staging routers

where
go :: [(Text, RouteTree)] -> Maybe RouteTree -> Code Text ->

Code Request -> Code Response
go ((y, tree) : statics) _ x xs =
[||
if $$x == $$(liftTyped y)
then $$(routeViaTree tree xs args)
else $$(go statics captures x xs)

||]
go [] Nothing x xs = [|| "404" ||]
go [] (Just captures) x xs =
routeViaTree captures xs [|| $$x : $$args ||]

Well-Typed

More staging

Applications of staging

Examples:

▶ optimising pipelines (fusion, streaming),
▶ parsing in all forms (pre-analyse grammar),
▶ printing / templating (constant folding),
▶ generic programming (specialising, removing intermediate representations),
▶ . . .

Conjecture: nearly any (E)DSL can be staged.

Promises much better and more reliable results than relying on inlining, specialisation and
rewrite rules, all of which are brittle.

Well-Typed

Applications of staging

Examples:

▶ optimising pipelines (fusion, streaming),
▶ parsing in all forms (pre-analyse grammar),
▶ printing / templating (constant folding),
▶ generic programming (specialising, removing intermediate representations),
▶ . . .

Conjecture: nearly any (E)DSL can be staged.

Promises much better and more reliable results than relying on inlining, specialisation and
rewrite rules, all of which are brittle.

Well-Typed

Applications of staging

Examples:

▶ optimising pipelines (fusion, streaming),
▶ parsing in all forms (pre-analyse grammar),
▶ printing / templating (constant folding),
▶ generic programming (specialising, removing intermediate representations),
▶ . . .

Conjecture: nearly any (E)DSL can be staged.

Promises much better and more reliable results than relying on inlining, specialisation and
rewrite rules, all of which are brittle.

Well-Typed

Staging techniques

1. Remove immediate overhead.

2. Exploit deeper knowledge by performing additional static analysis.

3. Make more fine-grained distinctions between static and dynamic data.

Well-Typed

Interesting applications in Haskell

Generic programming

Matthew Pickering, Andres Löh, Nicolas Wu. Staged Sums of Products.
Haskell 2020.

Parsing

Jamie Willis, Nicolas Wu, Matthew Pickering. Staged Selective Parser Combinators.
ICFP 2020.

Composition, algebraic structures

Jeremy Yallop, Tamara von Glehn, Ohad Kammar.
Partially-Static Data as Free Extension of Algebras. ICFP 2018.

Stream fusion (MetaOCaml; stay tuned for a Haskell version)

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, Yannis Smaragdakis.
Stream fusion, to completeness. POPL 2017.

Staged
Sums of Pro

ducts

Matthew Pickerin
g

Departm
ent of C

omputer Sc
ience

Univers
ity of Br

istol

United K
ingdom

matthew.
pickerin

g@bristol.
ac.uk

Andres
Löh

Well-Type
d LLP

andres@
well-ty

ped.com

Nicolas
Wu

Departm
ent of C

omputing

Imperial C
ollege L

ondon

United K
ingdom

n.wu@
imperial.a

c.uk

Abstrac
t

Generic
program

ming libra
ries hav

e histori
cally tra

ded effi-

ciency in
return fo

r conven
ience, an

d the gen
erics-so

p library

is no exc
eption. I

t offers a
simple, unif

orm, represe
ntation of

all datat
ypes pre

cisely as
a sum of produ

cts, making it
easy

to write ge
neric fu

nctions.
We show

how to finally make

generic
s-sop fast thro

ugh the use of stagi
ng with Typed

Template Ha
skell.

CCS Co
ncepts:

• Softw
are and

its engi
neering

→ Func-

tional l
anguag

es.

Keywor
ds: gene

ric prog
ramming, stag

ing

ACM Referen
ce Form

at:

Matthew Pickerin
g, Andre

s Löh, an
d Nicola

sWu. 2020. S
taged Su

ms

of Produ
cts. In Proceed

ings of t
he 13th

ACM SIGPLA
N Internat

ional

Haskell
Symposium

(Haskel
l ’20), A

ugust 2
7, 2020,

Virtual
Event,

USA. AC
M, New York, NY

, USA, 1
4 pages.

https://
doi.org

/10.114
5/

3406088
.340902

1

1 Introdu
ction

The gen
erics-so

p library [
de Vries

and Löh
2014] or

ganises

datatype
s into a

uniform
and stru

ctured w
ay: the c

hoice of

a constr
uctor is

represen
ted as an

n-ary sum type, an
d each

choice c
ontains

an n-ary product
represen

ting the
construc

-

tor argu
ments. As

with other ge
nerics li

braries,
the repr

e-

sentatio
n is used

to define f
unction

s that w
ork on a large

number of d
atatypes

by exploitin
g the unif

orm structur
e.

Unfortu
nately, l

ike all it
s generi

c library
siblings,

the perf
or-

mance of
generate

d code s
uffers un

less measures
are take

n

to minimize the a
bstractio

n overhe
ad. This

paper sh
ows how

we can remove the
abstract

ion overhea
d using

staging.

Conside
r a prod

uct type
such as

data Fo
o = Foo [In

t] Orde
ring Te

xt

Permission to make digi
tal or ha

rd copies o
f all or p

art of th
is work

for

persona
l or clas

sroom use is grant
ed without

fee provide
d that cop

ies

are not
made or d

istribute
d for profi

t or com
mercial ad

vantage
and that

copies b
ear this

notice a
nd the full

citation
on the first

page. Co
pyrights

for com
ponents

of this w
ork owned

by others t
han the author(s

) must

be hono
red. Abs

tracting
with credit is

permitted. To
copy otherwi

se, or

republis
h, to pos

t on serv
ers or to

redistrib
ute to lis

ts, requi
res prior

specific

permission and/or a
fee. Req

uest per
missions f

rom permissions@
acm.org.

Haskell
’20, Aug

ust 27, 2
020, Vir

tual Eve
nt, USA

© 2020 Co
pyright

held by
the own

er/autho
r(s). Pub

lication
rights li

censed

to ACM
.

ACM ISBN 978-1-45
03-8050-

8/20/08.
. . $15.00

https://
doi.org

/10.114
5/34060

88.3409
021

We can provide
a Semigroup

instance
for such

a type, r
elying

on the exist
ing Semigroup

instance
s for its

components
. The

semigroup operatio
n for Foo c

an be defin
ed as

sappen
dFoo ::

Foo→ Foo→ Foo

sappen
dFoo (Fo

o is1 o1
t1) (Foo

is2 o2 t2
) =

Foo (is1 ⋄ is2
) (o1 ⋄ o2

) (t1 ⋄ t2
)

This is a
typical g

eneric p
rogramming pattern:

we match

on the sole
construc

tor of a
datatype

, apply t
he semigroup

append
operatio

n (⋄) poin
twise to

its components
, and ap

-

ply the
construc

tor agai
n. None

of this i
s specifi

c to Foo; it

all work
s whene

ver we h
ave a sin

gle-cons
tructor d

atatype

where al
l components

have the
necessar

y Semigroup
instance

s.

Using ge
nerics-s

op, we c
an therefor

e define

gsappe
nd :: (IsProd

uctTyp
e a xs,A

ll Semigroup
xs) ⇒ a→ a→ a

gsappe
nd a1 a2

= produc
tTypeTo

(czipWithNP (Proxy @
Semigroup) (

mapIII (⋄))

(product
TypeFr

om a1) (pro
ductTy

peFrom
a2))

which ca
ptures e

xactly th
e pattern

describe
d above.

The con
-

straints
state tha

t the typ
e a must be a

single-c
onstruc

tor

datatyp
e and all its components

must be an instance
of

Semigroup. T
he funct

ions prod
uctTyp

eFrom
and prod

uctTyp
eTo

match on and apply the sole constru
ctor of t

he datatyp
e,

respecti
vely. Th

e functio
n czipWithNP zip

s togeth
er the co

m-

ponents
pointwi

se, using
the (⋄) func

tion.

In order to
make a typ

e such as Foo sa
tisfy the

constrai
nts

of the gs
append

function
, it must be an

instance
of theGe

neric

class, i.e
., it must be r

epresen
table in

the sum
-of-prod

ucts

style of
generic

s-sop. A
ssuming such

an instance
exists, w

e

can then simply writ
e

sappen
d′Foo

:: Foo→
Foo→ Foo

sappen
d′Foo

= gsappe
nd

The function
gsappe

nd can be instanti
ated to any single-

construc
tor datat

ype that
is an instance

of Gener
ic. Defin

ing

function
s generi

cally makes cod
e substa

ntially m
ore conc

ise

and redu
ces the p

otential
for error

s. Furthe
rmore, ope

rations

expresse
d generi

cally are
more robu

st to cha
nge: for

exam-

ple, add
ing or removing a field from Foo doe

s not re
quire

any cha
nge to th

e code o
f sappen

d′Foo
.

Howeve
r, before

we start
using ge

neric pr
ogramming all

over the
place, w

e should
ask: Is s

append
′
Foo

equally
fast as

sappen
dFoo, or

do we in
cur an overhea

d for usi
ng the g

eneric

machinery
? A simple benc

hmark that
uses bot

h function
s

Haskel
l 2020

Well-Typed

Interesting applications in Haskell

Generic programming

Matthew Pickering, Andres Löh, Nicolas Wu. Staged Sums of Products.
Haskell 2020.

Parsing

Jamie Willis, Nicolas Wu, Matthew Pickering. Staged Selective Parser Combinators.
ICFP 2020.

Composition, algebraic structures

Jeremy Yallop, Tamara von Glehn, Ohad Kammar.
Partially-Static Data as Free Extension of Algebras. ICFP 2018.

Stream fusion (MetaOCaml; stay tuned for a Haskell version)

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, Yannis Smaragdakis.
Stream fusion, to completeness. POPL 2017.

Well-Typed

Conclusions

Staging can ensure code that is obviously performing well.

You can avoid the unpredictable (or unavailable) features of Haskell’s optimiser.

Well-Typed

When will it be available?

In principle, now – and it has been since 2013(!).

In practice, there are many things that Matthew Pickering has been working on to improve:

▶ Improving library interface.
▶ Improving soundness guarantees.
▶ Avoiding re-typechecking of generated code.
▶ Handling of type annotations.
▶ Disciplined handling of effects in code generation.
▶ Proper handling of class constraints.

Such issues can only be found and eliminated if staging is being used – use staging!

Well-Typed

When will it be available?

In principle, now – and it has been since 2013(!).

In practice, there are many things that Matthew Pickering has been working on to improve:

▶ Improving library interface.
▶ Improving soundness guarantees.
▶ Avoiding re-typechecking of generated code.
▶ Handling of type annotations.
▶ Disciplined handling of effects in code generation.
▶ Proper handling of class constraints.

Such issues can only be found and eliminated if staging is being used – use staging!

Well-Typed

