Zero-overhead abstractions in Haskell using Staging

Haskell Love Conference

Andres Loh
2020-07-31

= Well-Typed

The Haskell Consultants

A simple program

Binary search trees:
data BST a =
Node Int a (BST a) (BST a)
| Leaf

= Well-Typed

A simple program

Binary search trees:
data BST a =
Node Int a (BST a) (BST a)
| Leaf

“Standard” lookup:
lookup :: Int -> BST a -> Maybe a
lookup _ Leaf = Nothing
lookup i (Node jalr)
case compare i j of
LT => lookup i 1
EQ -> Just a
GT -> lookup i r

= Well-Typed

A simple program (continued)

A statically known table (tree):

table :: BST String 5 "p"
table =

Node 5 "b" //// \\\\

(Node 3 "a" Leaf Leaf) - o
(Node 7 "c" Leaf Leaf) 34— "a 7 — "c

= Well-Typed

A simple program (continued)

A statically known table (tree):
table :: BST String

table = s b
Node 5 "b" //// \\\\
(Node 3 "a" Leaf Leaf)
(Node 7 "c" Leaf Leaf) 3= "a” 7= et

A specialised version of lookup :

lookupTable :: Int -> Maybe String
lookupTable i = lookup i table

= Well-Typed

A simple program (continued)

A statically known table (tree):
table :: BST String

table = s b
Node 5 "b" //// \\\\
(Node 3 "a" Leaf Leaf)
(Node 7 "c" Leaf Leaf) 3= "a” 7= et

A specialised version of lookup :

lookupTable :: Int -> Maybe String
lookupTable i = lookup i table

Will the tree be optimised away?

= Well-Typed

No

Core (simplified)

lookupTable = \ i_alfA -> lookup i_alfA table

lookup
= \ @a_algw ds_dlml dsl_dlmm -> case dsl_dimm of {
Node j_auA al_auB 1_auC r_auD ->
case ds_dlml of wildl_almS {I# x#_almT ->
case j_auA of {I# y#_almW ->
case <# x#_almT y#_almW of {
__DEFAULT ->
case ==# x#_almT y#_almW of {
__DEFAULT -> lookup wildl_almS r_auD
1# -> Just al_auB
1
1# -> lookup wildl_almS 1_auC
i3
Leaf -> Nothing
}

= Well-Typed

» Recursive functions are never inlined.
» There is fusion for lists (and a handful of other types) ...

» ... but not for a tree type we just defined.

= Well-Typed

What if we want to exploit the static table?

Option 1: hand-unroll the code

lookupTable :: Int -> Maybe String
lookupTable i =
case compare i 5 of
LT -> case compare i 3 of
LT -> Nothing
EQ -> Just "a"
GT -> Nothing
EQ -> Just "b"
GT -> case compare i 7 of
LT -> Nothing
EQ -> Just "c"
GT -> Nothing

= Well-Typed

Option 1: hand-unroll the code

lookupTable :: Int -> Maybe String
lookupTable i =
case compare i 5 of
LT -> case compare i 3 of
LT -> Nothing
EQ -> Just "a"
GT -> Nothing
EQ -> Just "b"
GT -> case compare i 7 of
LT -> Nothing
EQ -> Just "c"
GT -> Nothing

This is getting boring quickly ...

= Well-Typed

Option 1: hand-unroll the code

lookupTable :: Int -> Maybe String
lookupTable i =
case compare i 5 of
LT -> case compare i 3 of
LT -> Nothing
EQ -> Just "a"
GT -> Nothing
EQ -> Just "b"
GT -> case compare i 7 of
LT -> Nothing
EQ —> Ju c”
GT —>ANothing

This is get#hg boring quickly ...

= Well-Typed

Option 2: Type-level programming

In Haskell, we often move things that should be done statically into the types ...

v

Promote BST .

v

Define Lookup as a type family?

v

But we don't know the number statically ...

v

... thus we have to convert it using someNatVal or similar...

» ... and everything gets more complicated ...

v

... .and will this actually even end up being more efficient??

= Well-Typed

Option 2: Type-level programming

In Haskell, we often move things that should be done statically into thetypes ...

v

Promote BST .

v

Define Lookup as a type family?

But we don't know the number staticg

v

v

... thus we have to convert it ysiig someNatVal or similar...

» ... and everything gets paGre complicated ...

v

... and will this aetdally even end up being more efficient??

= Well-Typed

Option 3: Template Haskell

» Has a reputation for being low-level, dangerous, and difficult to maintain.

» |Is untyped, and therefore difficult to use.

Primary use case: eliminating boilerplate.

Iramm;.
oci Ti Mm;j
Oregechoolof g Shearg "9 for kg "
e
She:::g) SC’E’??eEJg’”eENng el
cse gt Uiersi, '
e.ogr_em/ v ‘Z/"non Peyto,
. erosory ¢ O Jong,
Simop, esearch | oS
Di@mig Ly
rOSO/TC
com

= Well-Typed

O by

Option 3: Template Haskell

e
e
e
e
e
. . . . / . .
» Has a reputation for being low-level, dangerous, and dn"ﬁcul}tdmalntaln.
» Is untyped, and therefore difficult to use. ~ -
e
. - . . 7~
Primary use case: eliminating boilerplate. _ e
e
e
7
e
e
e
e
e
e
e
e
e
e
e
7
_ e
R
- = Well-Typed

kell
e Has
ped Templat

ion 4: Ty

Option

II.
Haske
late

Temp

d variant of

limite

ore

chm

Amu

T ugmmm ing

wity, E\’])liri(;luuol(lriuus
”;iht aha 4 Lim \Im‘ml
Orege,, Gradyyyy Instit g, Ol Scien,,
1 9 Sheay, ecs, i

g ol

L, , Pracy,,

1 Mulntscage an g,
;,,..(,m«.y,,/‘ Haticyy, The oy ly i, e Ve
i) e talyy, llgry e CXecujo, of 4
Sty Comp, A © Cogp il gy 21d
Mg, 0 g lext of, PrOgran
Cnyyy Obey, X For ey
Ple. 3y cking i ot o rany,, - ang
Al b firyg (! Secony thiy Prograp, o Ompije, thing,
; .u lh('u/wrr« i,
erip, g %
ey, | Wty Pragray, ik e g, ol) Kene,
"t are Atioy m...,..l,u.v.h aud (o Cltio, e,y iy,
Bliage, . Uy Siye Proge, J[u/u,;.m Mg, Xprey, s
i g . Progey, Muy; Mg, Progp Ning ;X
Lty gy hou oy ey, the 16 foy g nep,
Oy t st 9 1y Bty .
hou g i lingiye IF B ulmcgm
Ve, To i), e iy Provig, Slpay
uple, an “ndeq Lage
“mbe. ! Pracgje, ues,
"he Besigy, o Metypy: WS g)
5 1y ey d as g, W
ity o
ety

Option 4: Typed Template Haskell

A much more limited variant of Template Haskell

Met,
ML,
L: "[“]”‘S‘/
Tge py,
8r PE
Py 1907

“amn,;,
nip,
8w,

Aung,
The Internet, 2013

Ore,
gon ¢ Wi
n (""'"/u,”,jh'l Ty,
Aliop

Publications Schedule

on with (Typed) Template Haskell

A,
s
We i, Geoffrey Mainland
ey
g
tag, S enty . .
" fre
el Type-Safe Runtime Code Generati
o 4y ¢ sc
Stage 1 kes
e i“' 31 May 2013
o At brog, Over the past several weeks | have implemented most of Simon Peyton Jones' proposal for a major fevision (0 Tomplate Haskel, This brings several new features ©© Template Haskell,
el g of including
o, Sl 5"
by, 5 1. Typed Template Haskel brackets and splces
tion, . & Dossi 2. Pattern splices and local declaration splices
ing ,("Dg;r s 5 e abilty to add (and use) new top-level declarations from within top-level splices.
o ple, - To iy “
ey) 10 g, las, | will concentrate on the first new feature because it allows us 1o enerate and complle Haskell values at run-time without sacrifieing type safety. The code in this post is available on
et o pragy, 5t M P i
ey 111 e ical gihub; the github repository README contains - tractions fo bullding the th-new branch of GHC, < hioh s where work on typed Template Haskellis being done. The GHC wiki
hat i
atj, contalns more defails about the current Implementaton status: The plan is that tis work willland In HEAD. before the 7.8 release of GHC
. ~hrned = We“ T
R yped

Option 4: Typed Template Haskell

A much more limited variant of Template Haskell.

How can this possibly be good?

» Typed.

» High-level interface.

» No IO atcompiletime.

» Generates only expressions, never top-level declarations.

» Can still access the power of normal TH underneath when really needed
(akin to unsafePerformIO).

= Well-Typed

Option 4: Typed Template Haskell

A much more limited variant of Template Haskell.

How can this possibly be good?

» Typed.

» High-level interface.

» No IO atcompiletime.

» Generates only expressions, never top-level declarations.

» Can still access the power of normal TH underneath when really needed
(akin to unsafePerformIO).

Primary use case: reliable performance!

= Well-Typed

Staging constructs

Quotes

e :: t
LIl e ||] :: Code t

Prevent reduction, build an AST.

= Well-Typed

Staging constructs

Quotes

e :: t
|| e ||] :: Code t

Prevent reduction, build an AST. type Code a = Q (TExp a)

= Well-Typed

Staging constructs

Quotes

e :: t
LIl e ||] :: Code t

Prevent reduction, build an AST.
Splices

e :: Code t
$%e :: t

Re-enable reduction, insert into an AST

= Well-Typed

Staging constructs

Quotes

e :: t
LIl e ||] :: Code t

Prevent reduction, build an AST.
Splices
e :: Code t
$%e :: t

Re-enable reduction, insert into an AST

Top-level splices insert into the current module

= Well-Typed

Example: Staging

lookup :: Int -> BST a -> Maybe a
lookup _ Leaf Nothing
lookup i (Node jalr)
case compare i j of
LT -> lookup i 1
EQ -> Just a
GT -> lookup i r

The staged function is supposed to be invoked in a top-level splice, and thus to run at

compilation time....

= Well-Typed

Example: Staging

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf =
lookup i (Node jalr)-=

Therefore, dynamic arguments are of Code type.

= Well-Typed

Example: Staging

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)
lookup _ Leaf = [|| Nothing |]]
lookup i (Node jalr)-=

= Well-Typed

Example: Staging

Code Int -> BST (Code a) -> Code (Maybe a)

lookup ::
= [l| Nothing [[]

lookup _ Leaf
lookup i (Node jalr)-=
Cl
case compare
LT ->
EQ ->
GT —>
[1]

of

= Well-Typed

Example: Staging

Code Int -> BST (Code a) -> Code (Maybe a)

lookup ::
= [l| Nothing [[]

lookup _ Leaf
lookup i (Node jalr)-=
Cl
case compare $$i
LT ->
EQ ->
GT —>
[1]

of

= Well-Typed

Example: Staging

(Code a) -> Code (Maybe a)

lookup :: Code Int -> BST
LIl Nothing |]]

lookup _ Leaf
lookup i (Node jalr)

Cll
case compare $$i $$(liftTyped j) of

LT => class Lift a where
EQ -> 1liftTyped :: a -> Code a

GT —>
[1]

instance Lift Int

= Well-Typed

Example: Staging

lookup :: Code Int -> BST (Code a) -> Code (Maybe a)

lookup _ Leaf = [|| Nothing |]]
lookup i (Node jalr)-=
Ll

case compare $$i $$(liftTyped j) of
LT -> $$(lookup i 1)
EQ ->
GT -> $$(lookup i r)

[1]

= Well-Typed

Example: Staging

Code Int -> BST (Code a) -> Code (Maybe a)

lookup ::
= [l| Nothing [[]

lookup _ Leaf
lookup i (Node jalr)-=

Cll
case compare $$i $$(liftTyped j) of

LT => $$(lookup i 1)
EQ -> Just $%$a
GT -> $$(lookup i r)

[1]
Note that stripping the staging constructs yields the original code

= Well-Typed

Using staged lookup

table :: BST (Code String)
table =
Node 5 [|| "b" []]
(Node 3 [|| "a" |]] Leaf Leaf)
(Node 7 [|| "c" ||] Leaf Leaf)

lookupTable :: Int -> Maybe String
lookupTable i =
$$(lookup []| i []] table)

= Well-Typed

Core again (simplified)

lookupTable = \ w_s4U0 -> lookupTablel = Just lookupTable2
case w_s4U0 of {I# wwl_s4U3 -> $wlookupTable wwl_s4U3} lookupTable2 = unpackCString# lookupTable3
$wlookupTable = \ ww_s4U3 -> lookupTable3 = "a"#
case <# ww_s4U3 5# of { lookupTable4 = Just lookupTable5
DEFAULT —> lookupTable5 = unpackCString# lookupTable5
case ww_s4U3 of wild_Xf { lookupTable6 = "b"#
DEFAULT ->
q - lookupTable7 = Just lookupTable8
case‘\‘::ﬂ “"“[Id_‘:(f ZENOT lookupTable8 = unpackCString# lookupTable9

case wild_Xf of { lookupTable9 = "c"#

ULT -> Nothing;
t -> lookupTable7

1# -> Nothing

-> lookupTable4

1# ->
case <# ww_s4U3 3# of {
__DEFAULT ->
case ww_s4U3 of {
DEFAULT -> Nothing;

3# -> lookupTablel

-> Nothing

= Well-Typed

Core again (simplified)

lookupTable = \ w_s4U0 -> lookupTablel = Just lookupTable2
case w_s4U0 of {I# wwl_s4U3 -> $wlookupTable wwl_s4U3} lookupTable2 = unpackCString# lookupTable3

$wlookupTable = \ ww_s4U3 -> lookupTable3 = "a"#
case <# ww_s4U3 5# of { lookupTable4 = Just lookupTable5
DEFAULT —> lookupTable5 = unpackCString# lookupTable5
case ww_s4U3 of wild_Xf { lookupTable6 = "b"#
DEFAULT ->
q - lookupTable7 = Just lookupTable8
case‘\‘::ﬂ “"“[Id_‘:(f ZENOT lookupTable8 = unpackCString# lookupTable9

case wild_Xf of { lookupTable9 = "c"#

FAULT -> Nothing;
-> lookupTable7

1# -> Nothing

» Equivalent to hand-unrolled code.
> lookupTable4
1 > » Not relying substantially on GHC's
ww_s4U3 3# of { L.
T optimiser.
case ww_s4U3 of { . . L. .
DEFAULT -> Nothing; » (But still subject to optimisation.)

3# -> lookupTablel

1# -> Nothing

= Well-Typed

Another example: Routing in a web server

Example routes

/login

/language

/language/:1id

/language/:1lid/new
/language/:1lid/feature
/language/:1lid/feature/:fid
/language/:1lid/feature/:fid/since

= Well-Typed

Example routes

/login

/language

/language/:1id

/language/:1lid/new
/language/:1lid/feature
/language/:1lid/feature/:fid
/language/:1lid/feature/:fid/since

We are interested in efficient dispatch of a request to a handler.

= Well-Typed

Simplified scenario

data Route =
Static Text Route
| Capture Route
| End

data Router

at :: Route -> Handler -> Router
instance Semigroup Router

= Well-Typed

Simplified scenario

data Route =
Static Text Route
| Capture Route
| End

data Router

at :: Route -> Handler -> Router
instance Semigroup Router

type Request = [Text]
type Handler = [Text] -> Response
type Response = Text

route :: Router -> Request -> Handler

= Well-Typed

Simplified scenario

data Route =
Static Text Route
| Capture Route
| End

data Router

at :: Route -> Handler -> Router
instance Semigroup Router

type Request = [Text]
type Handler = [Text] -> Response
type Response = Text

route :: Router -> Request -> Handler

We assume the Router to be statically known.

= Well-Typed

Staging routers

data Router = MkRouter [(Route, Code Handler)]

= Well-Typed

Staging routers

data Router = MkRouter [(Route, Code Handler)]

Build a suitable data structure:
data RouteTree =

RouteTreeNode
(Map Text RouteTree) --dispatch on topmost path component
(Maybe RouteTree) -- routes that capture this component
(Code Handler) -- possibly failing handler for current path

buildRouteTree :: Router -> RouteTree

= Well-Typed

Staging routers

Use the tree to generate code:

routeViaTree :: RouteTree -> Code Request -> Code [Text] -> Code Response
routeViaTree (RouteTreeNode statics captures handler) req args =

LI
case $$req of
L] -> $$handler $$args
X : xs —> $$(go (tolList statics) captures [|]| x |1 []] xs [||1)
[1]
where

= Well-Typed

Staging routers

where
go :: [(Text, RouteTree)] -> Maybe RouteTree -> Code Text ->
Code Request -> Code Response
go ((y, tree) : statics) _ x xs =
Ll
if $$x == $$(LliftTyped y)
then $$(routeViaTree tree xs args)
else $$(go statics captures x xs)
[1]
go [] Nothing x xs =[]] "404" |]1]
go [] (Just captures) x xs =
routeViaTree captures xs [|| $$x : $$args ||]

= Well-Typed

More staging

Applications of staging

Examples:

» optimising pipelines (fusion, streaming),
» parsing in all forms (pre-analyse grammar),
» printing / templating (constant folding),

» generic programming (specialising, removing intermediate representations),

= Well-Typed

Applications of staging

Examples:

» optimising pipelines (fusion, streaming),
» parsing in all forms (pre-analyse grammar),
» printing / templating (constant folding),

» generic programming (specialising, removing intermediate representations),

> ...

Conjecture: nearly any (E)DSL can be staged.

= Well-Typed

Applications of staging

Examples:

» optimising pipelines (fusion, streaming),

» parsing in all forms (pre-analyse grammar),

» printing / templating (constant folding),

» generic programming (specialising, removing intermediate representations),

> ...

Conjecture: nearly any (E)DSL can be staged.

Promises much better and more reliable results than relying on inlining, specialisation and
rewrite rules, all of which are brittle.

= Well-Typed

Staging techniques

1. Remove immediate overhead.
2. Exploit deeper knowledge by performing additional static analysis.

3. Make more fine-grained distinctions between static and dynamic data.

= Well-Typed

Inter
estin
g applications in
Hask
ell

Gen
eri
ic programmin
g

Matth
ew Pickeri
Haskell 2020 ering, Andres L&
. 6h, Nicolas Wu. S

. Staged
SUmS
of Prod
ucts

Parsi ng
\—\aske\\ 2020

Jami)
ie Willis, Nicolas W
u

ICFP 2020.
mbinators

Com
position
JErem Y
Parti y Yallop, staged Sums of roducts
1a
l'Y-Stati Mmhewv ndres L wicohas ¥ S W
Pepatmet ~f Comput ¢ Science s\\T yped P mvm Lot Computine
Ui \crs\w {Bt\s\n\ dresOwe\\ yped<o™ \Lo\\ege\on on
United K& ngdo" \ ite dm
m\ewp\ckcn @b \s\o\ac uk @i erialacu¥
We can 2014 semigrou? nce fOT c‘rm yv ying
o the © g senier? T s for i e s ne
scm\gm peration ©° foo canbe ¢ ﬁmc\a

Stream
fusio
n
Oleg Ki Abstract
g K|Se|yo eneric POETT g 052 pave WSO
V, A ency I forcon’® enience n
g L offers & smp\e form: € nof
e products T s
o oty 2 oo
¢
e €557 proge e
& faype: 0E e semies®
gise U one! and 2l
o

St
ream fusion, t

(mxp\

a“aw
M qom AN
B
g @t
product™? “\mm azn

r\d th

gy thepatte™® gescrl o The €00
© qbed smg\ cnns\rudor
gl S fance of

[]

Interesting applications in Haskell

Generic programming

Matthew Pickering, Andres Loh, Nicolas Wu. Staged Sums of Products.
Haskell 2020.

Parsing

Jamie Willis, Nicolas Wu, Matthew Pickering. Staged Selective Parser Combinators.
ICFP 2020.

Composition, algebraic structures

Jeremy Yallop, Tamara von Glehn, Ohad Kammar.
Partially-Static Data as Free Extension of Algebras. ICFP 2018.

Stream fusion (MetaOCaml; stay tuned for a Haskell version)

Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, Yannis Smaragdakis.
Stream fusion, to completeness. POPL 2017.

= Well-Typed

Conclusions

Staging can ensure code that is obviously performing well.

You can avoid the unpredictable (or unavailable) features of Haskell's optimiser.

= Well-Typed

When will it be available?

In principle, now - and it has been since 2013(!).

= Well-Typed

When will it be available?

In principle, now - and it has been since 2013(!).

In practice, there are many things that Matthew Pickering has been working on to improve:

» Improving library interface.

» Improving soundness guarantees.

» Avoiding re-typechecking of generated code.

» Handling of type annotations.

» Disciplined handling of effects in code generation.

» Proper handling of class constraints.

Such issues can only be found and eliminated if staging is being used - use staging!

= Well-Typed

