

A second prototype

of a first prototype
for Generic HVSKELL

Andres Loh

15. November 2000

w2

a0 [y

&

rur g
E

i

Generic HVSKELL

Overview

e Generic definitions (MPC-style)
e |Implementation status

e Goals of future work on the prototype

Generic HVSKELL

Generic programming

e View Haskell data definitions as definitions for structured sum-of-product types

Generic HVSKELL

Generic programming

e View Haskell data definitions as definitions for structured sum-of-product types

e Replace Haskell's n-ary sums and products by binary sums and products

Generic HVSKELL

LA
LB

) Universiteit U

I'._'r=!|J 4 | T

Generic programming

e View Haskell data definitions as definitions for structured sum-of-product types
e Replace Haskell's n-ary sums and products by binary sums and products

e \Write functions based on structural recursion over datatypes,
I. e. give clauses for 4, X etc.

Generic HVSKELL

LA
Al

M2 Universiteit U
I'._'r=!|J _ |'!' [

Generic programming

e View Haskell data definitions as definitions for structured sum-of-product types

Replace Haskell's n-ary sums and products by binary sums and products

e \Write functions based on structural recursion over datatypes,
I. e. give clauses for 4, X etc.

e Use the same function for arbitrary datatypes

Generic HVSKELL

LA
Al

) Universiteit U

I'._'r=!|J 4 [T

Generic programming

e View Haskell data definitions as definitions for structured sum-of-product types

Replace Haskell's n-ary sums and products by binary sums and products

e \Write functions based on structural recursion over datatypes,
I. e. give clauses for 4, X etc.

e Use the same function for arbitrary datatypes

e Similar thing as derive in Haskell, but more general and well-defined

Generic HVSKELL

] ()
LB

M2 Universiteit U
I'._'r=!|J _ |'!' [

Generic programming

e View Haskell data definitions as definitions for structured sum-of-product types
e Replace Haskell's n-ary sums and products by binary sums and products

e \Write functions based on structural recursion over datatypes,
I. e. give clauses for 4, X etc.

e Use the same function for arbitrary datatypes
e Similar thing as derive in Haskell, but more general and well-defined

e Examples include map, encode, size, reduce (crush), cata (fold)

Generic HVSKELL

N,
&3 Universiteit U

"._'::!) L!I‘

MPC-style definitions — example

This function encodes a value of arbitrary type into a list of bits.

Encode(k :: OJ) R — ok

Encode (x) t = t — [Bit]

Encode(rki — Ka) t = Va.Encode{rk1) a — Encode{ks) (t a)
encode{(t :: K) 2 Encode(k) t

encode (1)) =N

encode(+) eA eB (inl a) = 0:¢4 a

encode(+) eA eB (inr b) = I:eBb

encode(X) eA eB (a,b) = eAa-+H eBb

Generic HVSKELL

MPC-style definitions — continued

e Based on Hinze's paper at MpC 2000

Generic HVSKELL

v e
E' . I_!!‘ 'I t I o, | 'I
w o Universitent U
LE A e i

MPC-style definitions — continued

e Based on Hinze's paper at MpC 2000

e No restriction to regular types.

Generic HVSKELL

A0 [F ey
M Universiteit U

I'._'r=!|J 4 | T

MPC-style definitions — continued

e Based on Hinze's paper at MpC 2000
e No restriction to regular types.

e One polytypic declaration works for types of arbitrary kind.
It consists of a type (Encode) and a function (encode) definition.

Generic HVSKELL

A0 [F ey
M Universiteit U

I'._'r=!|J 4 | T

MPC-style definitions — continued

e Based on Hinze's paper at MpC 2000
e No restriction to regular types.

e One polytypic declaration works for types of arbitrary kind.
It consists of a type (Encode) and a function (encode) definition.

e |f specialised to types of different kinds, the type of the generic function varies.

Generic HVSKELL

A0 [F ey
I T_im

M Universiteit U

I'._'r=!|J 4 [T

MPC-style definitions — continued

e Based on Hinze's paper at MpC 2000
e No restriction to regular types.

e One polytypic declaration works for types of arbitrary kind.
It consists of a type (Encode) and a function (encode) definition.

e |f specialised to types of different kinds, the type of the generic function varies.

e The line

Encode(rk1 — Ko) t = Va.Encode{rk1) a — Encode({ks) (t a)

can be left out, as it has to be as it is for the definition to be well-typed as a whole.

Generic HVSKELL

A0 [F ey
& 5 Universiteit U

I'._'r=!|J 4 [T

MPC-style definitions — continued

e Based on Hinze's paper at MpC 2000
e No restriction to regular types.

e One polytypic declaration works for types of arbitrary kind.
It consists of a type (Encode) and a function (encode) definition.

e |f specialised to types of different kinds, the type of the generic function varies.

e The line

Encode(rk1 — Ko) t = Va.Encode{rk1) a — Encode({ks) (t a)

can be left out, as it has to be as it is for the definition to be well-typed as a whole.

e The user has to supply:
— the type of the function specialised to a type of kind *

Generic HVSKELL

A0 [F ey
I T_im

M Universiteit U

I'._'r=!|J 4 [T

MPC-style definitions — continued

e Based on Hinze's paper at MpC 2000
e No restriction to regular types.

e One polytypic declaration works for types of arbitrary kind.
It consists of a type (Encode) and a function (encode) definition.

e |f specialised to types of different kinds, the type of the generic function varies.

e The line

Encode(rk1 — Ko) t = Va.Encode{rk1) a — Encode({ks) (t a)

can be left out, as it has to be as it is for the definition to be well-typed as a whole.

e The user has to supply:

— the type of the function specialised to a type of kind *
— clauses for (), constant types, 4+ and X

Generic HVSKELL

. = Universiteit U

Implementation

e Based on the work of Jan de Wit

e Written in Haskell 98 using UU_Scanner, UU_Parsing and UU_Pretty
(and therefore needing GHC/Hugs extensions)

® |s supposed to be a quick hack in order to produce results soon

e We try to follow Hinze's “Habilitationsschrift” which contains a chapter outlining

iImplementation issues

Generic HVSKELL

LA
LB

M2 Universiteit U
I'._'r=!|J _ |'!' [

Implementation — continued

Input A single file (.ghs) written in a subset of Haskell
(for example no modules, no type classes, only builtin infix operators)
with extensions for defining generic functions

Generic HVSKELL

Implementation — continued

Input A single file (.ghs) written in a subset of Haskell
(for example no modules, no type classes, only builtin infix operators)
with extensions for defining generic functions

Step 1 The file is parsed and grouped to
e data definitions
e polyvalue definitions
(i. e. MPC-style generic function definitions)
e other stuff

Al

Fre:

B

0!

.I'._'r# L

Universiteit 1

Generic HVSKELL

LA
Al

M2 Universiteit U
I'._'r=!|J _ |'!' [

Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types
constructed only out of binary sums and products from constant types,
I. €. no constructor names, no field labels.

Generic HVSKELL

LA
Al

M2 Universiteit U
I'._'r=!|J _ |'!' [

Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types
constructed only out of binary sums and products from constant types,
I. €. no constructor names, no field labels.
Furthermore, we provide embedding functions from a “real” datatype to its
structural equivalent type.

Generic HVSKELL

LA
LB

M2 Universiteit U
I'._'r=!|J _ |'!' [

Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types
constructed only out of binary sums and products from constant types,
I. €. no constructor names, no field labels.
Furthermore, we provide embedding functions from a “real” datatype to its
structural equivalent type.

Step 3 The polyvalue definitions are translated line by line into
ordinary Haskell functions.

Generic HVSKELL

LA
LB

M2 Universiteit U
I'._'r=!|J _ |'!' [

Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types
constructed only out of binary sums and products from constant types,
I. €. no constructor names, no field labels.
Furthermore, we provide embedding functions from a “real” datatype to its
structural equivalent type.

Step 3 The polyvalue definitions are translated line by line into
ordinary Haskell functions.

Step 4 For every pair of a generic function and a datatype definition a specialisation
is generated from the function to the datatype.
(This is possible because MPC-style definitions are not specific to a kind!)

Generic HVSKELL

] ()
B

I'._'r=!|J 4 | |'!

Universiteit 1

Implementation — continued

Step 2 All defined datatypes are translated into structural equivalent types
constructed only out of binary sums and products from constant types,
I. €. no constructor names, no field labels.
Furthermore, we provide embedding functions from a “real” datatype to its
structural equivalent type.

Step 3 The polyvalue definitions are translated line by line into
ordinary Haskell functions.

Step 4 For every pair of a generic function and a datatype definition a specialisation
is generated from the function to the datatype.
(This is possible because MPC-style definitions are not specific to a kind!)

Output A single file (.hs) containing Haskell 98 with extensions
(we need rank-2 type signatures)

Generic HVSKELL

Sl
&3 Universiteit U

L

Example (Syntax demonstration)

We revisit the encode function definition from the beginning:

Encode(k :: O) K — %

Encode (%) t = t — [Bit]

Encode(rk1 — Ka) t = Va.Encode{rk1) a — Encode({rs) (t a)
encode{(t :: K) 2 Encode(k) t

encode (1)) []
encode(+) eA eB (inl a) = 0:¢4 a
encode(+) eA eB (inr b) I:eBb
encode (X) eA eB (a,b) eAd a+H eB b

Generic HVSKELL

LA

= B I Universiteit U
“'r:!JL |'!' [}

Example (Syntax demonstration) — continued

This is how that transforms into the syntax of the prototype compiler:

polyvalue encode {| t |} :: t -> [Bit]

encode{| 1 |} X = []
encode{| + |} eA eB (LEFT x1) =0 : (eA x1)
encode{| + |} eA eB (RIGHT xr) =TI : (eB xr)

encode{| * |} eA eB (PROD x1 x2) = eA x1 ++ eB x2

Generic HVSKELL

LA

= B I Universiteit U
“'r:!JL |'!' [}

Example (Syntax demonstration) — continued

This is how that transforms into the syntax of the prototype compiler:

polyvalue encode {| t |} :: t -> [Bit]

encode{| 1 |} X = []
encode{| + |} eA eB (LEFT x1) =0 : (eA x1)
encode{| + |} eA eB (RIGHT xr) =TI : (eB xr)

encode{| * |} eA eB (PROD x1 x2) = eA x1 ++ eB x2

We provide the following datatypes:

data Bit 0| I
data List a = Nil | Cons a (List a)
data GRose ¢ a = Node a (¢ (GRose c a))

Generic HVSKELL

L
)

w % & Universiteit U

Example (Call of compiler)

Now we can call the compiler on this file:

$ gh2hs --verbose EncodeTalk.ghs

Generic HVSKELL

Example (Call of compiler)

Now we can call the compiler on this file:

$ gh2hs --verbose EncodeTalk.ghs
Generic Haskell compiler, version 0.0.4
Options are: [Verbose]

Scanned.

Parsed.

File EncodeTalk.ghs read.

Kinds inferred.

Structure types generated.

Isomorphisms generated.

Iso-adapters for kind-*-datatypes generated.
Type-synonyms for polytypic values generated.
Iso-adapters generated.

Components generated.

Requirements analyzed.

Specializations generated.

$ _

Generic HVSKELL

Example (Generated code)

The inferred kinds of the datatypes are written as a comment to the output file.
The builtin list and pair types are added to the list.

-—- Datatypes

data Bit =0 | I

data List a = Nil | Cons a (List a)
data GRose f a = Node a (f (GRose f a))
-— LIST :: (* => x*)

-— PAIR :: (* => (x => %))

-- Bit :: *
-— List :: (x => x*)
—— GRose :: ((x => %) => (x —=> %))

Generic HVSKELL

Example (Generated code) — continued

These are the generated structural types. Note that the translations of the
builtin list type and the user-defined one are identical.

—-— Structure types

type LIST__ a = SUM UNIT (PROD a (LIST a))
type PAIR__ a b = PROD a b
type Bit__ = SUM UNIT UNIT

type List__ a = SUM UNIT (PROD a (List a))
type GRose__ f a = PROD a (f (GRose f a))

Generic HVSKELL

Example (Generated code) — continued

Isomorphisms for mapping types to the structural types are generated.
These are lifted to the type of generic functions.

-- Type synonyms for polytypic values
type EncodeType t = t -> [Bit]

-- Iso-adapters for polyvalues
isoMapEncodeType :: Iso al al__ -> Iso (EncodeType al) (EncodeType al__)
isoMapEncodeType isoMapt = ((isoMapFUN isoMapt) (isoMapLST isoMapBit))

Generic HVSKELL

Example (Generated code) — continued

The translation of the lines of the generic function definition is almost trivial.

—-- Components

encodeUNIT :: EncodeType UNIT

encodeUNIT x = []

encodeSUM :: EncodeType al -> EncodeType bl -> EncodeType (SUM al bl)
encodeSUM eA eB (LEFT x1) = (0:(eA x1))

encodeSUM eA eB (RIGHT xr) = (I:(eB xr))

encodePROD :: EncodeType al -> EncodeType bl -> EncodeType (PROD al bl)
encodePROD eA eB (PROD x1 x2) = ((eA xl1)++(eB x2))

Generic HVSKELL

Example (Generated code) — continued

Finally, we get a look at the specialised functions for Bit, List and GRose.

encodeBit :: Bit -> [Bit]

encodeBit = ((osi (isoMapEncodeType isoBit)) encodeBit__)
encodeBit__ :: Bit__ -> [Bit]
encodeBit__ = ((encodeSUM encodeUNIT) encodeUNIT)

encodelList :: (a01 -> [Bit]) -> List a01 -> [Bit]
encodelList encodea = ((osi (isoMapEncodeType isoList))
(encodelList__ encodea))
encodelList__ (a01 -> [Bit]) -> List__ a01 -> [Bit]
encodelList__ encodea = ((encodeSUM encodeUNIT)
((encodePROD encodea) (encodelList encodea)))
encodeGRose :: (forall all . (all -> [Bit]) -> a01 all -> [Bit])
-> (a21 -> [Bit]) -> GRose a01 a21 -> [Bit]
encodeGRose encodef encodea = ((osi (isoMapEncodeType isoGRose))
((encodeGRose__ encodef) encodea))
encodeGRose__ :: (forall all . (all -> [Bit]) -> a01 all -> [Bit])
-> (a21 -> [Bit]) -> GRose__ a01 a21 -> [Bit]
encodeGRose__ encodef encodea = ((encodePROD encodea)
(encodef ((encodeGRose encodef) encodea)))

Generic HVSKELL

Example (Usage of generated code)

> encodeBit O
0
> encodeBit I
I
>

encodelList encodeBit $ I ‘Cons‘ (I ‘Cons‘ (0 ‘Cons‘ Nil))
ITITII0O0
> let
empty0 = Node 0 Nil; emptyl = Node I Nil
in
encodeGRose encodelList encodeBit
$ Node I (emptyl ‘Cons‘ (emptyl ‘Cons‘ (empty0 ‘Cons‘ Nil)))
ITIOIIOIO000
>

Generic HVSKELL

Example (Usage of generated code)

> encodeBit O
0
> encodeBit I
I
>

encodelList encodeBit $ I ‘Cons‘ (I ‘Cons‘ (0 ‘Cons‘ Nil))
ITITII0O0
> let
empty0 = Node 0 Nil; emptyl = Node I Nil
in
encodeGRose encodelList encodeBit
$ Node I (emptyl ‘Cons‘ (emptyl ‘Cons‘ (empty0 ‘Cons‘ Nil)))
ITIOIIOIO000
>

e Names of generated functions are built by extending the name of the function
with the name of the type.

e Nothing (yet) is done to prevent name clashes.

Generic HVSKELL

LA
Al

M2 Universiteit U
I'._'r=!|J _ |'!' [

Future goals (decreasing priority)

e Wipe out some small technical deficiencies
e Clean up code a bit, switch to Attribute Grammar system

e Extend the parser to parse more or less Haskell 98
plus generic programming extensions

e Provide fixed-kind instantiations of MPC-style generic definitions
e Allow for better control over the specialisation process

e Add typechecking

Generic HVSKELL

] ()
Al

M2 Universiteit U
I'._'r=!|J _ |'!' [

Some remaining deficiencies are no problems

Hinze already provides solutions in his thesis for

® mapping more-than-rank-2 type signatures to rank-2 type signatures
e allowing user-defined types in the signatures of generic functions

e providing access to constructor names and labels of fields
(needed for a reimplementation of show)

Generic HVSKELL

] ()
; :7' F Universiteit U
I'._'r=! _ |'!' |}

Extending the parser

We need a better parser. It should parse most of Haskell 98 to make
the prototype usable for Haskell users.

e hsparser by Sven Panne, Simon Marlow and Noel Winstanley is a
happy-based parser for full Haskell 1.4 that could be adapted

e \Write a parser ourselves, using UU_Parsing
(and we could have a more suitable abstract syntax)

Generic HVSKELL

a0 [y
o
]

&

Gl
More genericity

Let's have a look at the MPC-style generic function count:

Count(k :: [J) K — %

Count(x) t = t — Int

Count{k1 — ko) T = Va.Count(ki) a — Count(TB) (t a)
count (t :: k) 2 Count(k) t

count (1) .

count(+) cA ¢B (inl a) = cAa

count(+) cA ¢B (inr b) = cBb

count{ X) eA eB (a, b) = cAa+cBb

We want to be able to write the (still generic) instances sum and size of count
for x — *-kinded types:

sum{(f :: x — %)) 2 f Int — Int
sum(f) = count(f) id
size{(f 11 x — %) 2 FA— Int
size (f) = count{f)) (const 1)

Generic HVSKELL

LA
LB

81, Universiteit U

I'._'r=!|J 4 [T

Specialise the specialisation process

e Give the user special syntax to use the generic functions at a specific type
everywhere (we need to parse more than one file)

e Specialisations to applied type contructors are also possible:
write encode (List Int) rather than encode{ List) encode{Int)

e Let the user leave out the type, but that requires . ..

Generic HVSKELL

] ()
= B I Universiteit U

Typechecking

e Possibilities have to be investigated

e Providing typechecking for full Haskell 98 will probably be a lot of work

Generic HVSKELL

ik t!f%‘.;
&3 Universiteit U

s

Thank you for listening

Generic HVSKELL

