
(Simulating) Effects in Domain-Specific Languages
IOHK Global Summit Lisbon 2018

Andres Löh

2018-01-17 — Copyright © 2018 Well-Typed LLP

Well-Typed
The Haskell Consultants

Messages of the talk

▶ Use deep embeddings so that you can define multiple
interpretations, and in particular simulate all your programs in
different contexts.

▶ Keep in mind that you can use both initial and final style –
whatever works easier for you.

▶ Definemeaningful application-specific interfaces that express
what you are actually doing.

▶ Keep simulation in mind when designing your interfaces. Do not
expose unnecessary implementation details.

Well-Typed

Flavours of Haskell EDSLs

Hutton’s Razor1

A language with just two operations:

lit :: Integer -> Expr -- integer literal
add :: Expr -> Expr -> Expr -- addition

One of the most simple EDSLs one can define.

Example program:

term :: Expr
term = lit 1 `add` (lit 3 `add` lit 4)

1named after Graham Hutton

Well-Typed

Hutton’s Razor1

A language with just two operations:

lit :: Integer -> Expr -- integer literal
add :: Expr -> Expr -> Expr -- addition

One of the most simple EDSLs one can define.

Example program:

term :: Expr
term = lit 1 `add` (lit 3 `add` lit 4)

1named after Graham Hutton

Well-Typed

Hutton’s Razor1

A language with just two operations:

lit :: Integer -> Expr -- integer literal
add :: Expr -> Expr -> Expr -- addition

One of the most simple EDSLs one can define.

Example program:

term :: Expr
term = lit 1 `add` (lit 3 `add` lit 4)

1named after Graham Hutton

Well-Typed

Shallow embedding

The embedded program directly denotes its interpretation:

type Expr = Integer

lit = id
add = (+)

GHCi> term
8

Well-Typed

Shallow embedding

The embedded program directly denotes its interpretation:

type Expr = Integer

lit = id
add = (+)

GHCi> term
8

Well-Typed

Shallow embedding – evaluation

Pro:

▶ Very direct and simple.
▶ Usually quite performant.
▶ Easy to add new language constructs.

Con:

▶ Tied to a single interpretation / semantics.
▶ Interface of the EDSL is implicit.
▶ No analysis of the program possible.
▶ No proper abstraction.

Well-Typed

Deep embedding

The embedded program represents itself (and thereby all possible
interpretations):

data Expr =
Lit Integer

| Add Expr Expr

lit = Lit
add = Add

Well-Typed

Interpretation: evaluation

eval :: Expr -> Integer
eval (Lit i) = i
eval (Add e1 e2) = eval e1 + eval e2

GHCi> eval term
8

Well-Typed

Interpretation: evaluation

eval :: Expr -> Integer
eval (Lit i) = i
eval (Add e1 e2) = eval e1 + eval e2

GHCi> eval term
8

Well-Typed

Interpretation: textual representation

text :: Expr -> String
text (Lit i) = show i
text (Add e1 e2) =
"(" <> text e1 <> "+" <> text e2 <> ")"

GHCi> text term
"(1+(3+4))"

Well-Typed

Interpretation: textual representation

text :: Expr -> String
text (Lit i) = show i
text (Add e1 e2) =
"(" <> text e1 <> "+" <> text e2 <> ")"

GHCi> text term
"(1+(3+4))"

Well-Typed

Interpretation: instructions for a stack machine

data Instr =
PUSH Integer

| ADD

compile :: Expr -> [Instr]
compile (Lit i) = [PUSH i]
compile (Add e1 e2) =
compile e1 ++ compile e2 ++ [ADD]

GHCi> compile term
[PUSH 1, PUSH 3, PUSH 4, ADD, ADD]

Well-Typed

Interpretation: instructions for a stack machine

data Instr =
PUSH Integer

| ADD

compile :: Expr -> [Instr]
compile (Lit i) = [PUSH i]
compile (Add e1 e2) =
compile e1 ++ compile e2 ++ [ADD]

GHCi> compile term
[PUSH 1, PUSH 3, PUSH 4, ADD, ADD]

Well-Typed

Deep embedding – evaluation

Pro:

▶ Easy to define several interpretations.
▶ Easy to perform analysis and transformations of the program.
▶ Interface is explicit (via constructors of datatype).
▶ Hard to refer to a particular abstraction.

Con:

▶ Sometimes trickier in terms of performance (e.g. sharing).
▶ Harder to add new language constructs.

Well-Typed

Using a type class instead

class IsExpr e where
lit :: Integer -> e
add :: e -> e -> e

term :: IsExpr e => e
term = lit 1 `add` (lit 3 `add` lit 4)

Slightly different interface:

add :: Expr -> Expr -> Expr
add :: IsExpr e => e -> e -> e

Well-Typed

Using a type class instead

class IsExpr e where
lit :: Integer -> e
add :: e -> e -> e

term :: IsExpr e => e
term = lit 1 `add` (lit 3 `add` lit 4)

Slightly different interface:

add :: Expr -> Expr -> Expr
add :: IsExpr e => e -> e -> e

Well-Typed

Using a type class instead

class IsExpr e where
lit :: Integer -> e
add :: e -> e -> e

term :: IsExpr e => e
term = lit 1 `add` (lit 3 `add` lit 4)

Slightly different interface:

add :: Expr -> Expr -> Expr
add :: IsExpr e => e -> e -> e

Well-Typed

Interpretation: evaluation

instance IsExpr Integer where

lit :: Integer -> Integer
lit = id

add :: Integer -> Integer -> Integer
add = (+)

GHCi> term :: Integer
8

Well-Typed

Interpretation: evaluation

instance IsExpr Integer where

lit :: Integer -> Integer
lit = id

add :: Integer -> Integer -> Integer
add = (+)

GHCi> term :: Integer
8

Well-Typed

Interpretation: textual representation

instance IsExpr String where

lit :: Integer -> String
lit i = show i

add :: String -> String -> String
add e1 e2 =
"(" <> e1 <> "+" <> e2 <> ")"

Note: No recursive calls.

GHCi> term :: Eval
"(1+(3+4))"

Well-Typed

Interpretation: textual representation

instance IsExpr String where

lit :: Integer -> String
lit i = show i

add :: String -> String -> String
add e1 e2 =
"(" <> e1 <> "+" <> e2 <> ")"

Note: No recursive calls.

GHCi> term :: Eval
"(1+(3+4))"

Well-Typed

Interpretation: textual representation

instance IsExpr String where

lit :: Integer -> String
lit i = show i

add :: String -> String -> String
add e1 e2 =
"(" <> e1 <> "+" <> e2 <> ")"

Note: No recursive calls.

GHCi> term :: Eval
"(1+(3+4))"

Well-Typed

Interpretation: instructions for a stack machine

instance IsExpr [Instr] where

lit :: Integer -> [Instr]
lit i = [PUSH i]

add :: [Instr] -> [Instr] -> [Instr]
add e1 e2 =
e1 ++ e2 ++ [ADD]

GHCi> term :: [Instr]
[PUSH 1, PUSH 3, PUSH 4, ADD, ADD]

Well-Typed

Probably better: use a newtype

newtype Eval = EvalC {unEval :: Integer}
deriving Show

instance IsExpr Eval where

lit :: Integer -> Eval
lit = coerce

add :: Eval -> Eval -> Eval
add = coerce ((+) :: Integer -> Integer -> Integer)

GHCi> term :: Eval
EvalC {unEval = 8}

Well-Typed

Comparison

“Initial” style:

data Expr =
Lit Integer

| Add Expr Expr

“Final” style:

class IsExpr e where
lit :: Integer -> e
add :: e -> e -> e

Both are deep embeddings, with slightly different advantages and
disadvantages.

Well-Typed

From final to initial

instance IsExpr Expr where
lit = Lit
add = Add

Well-Typed

From initial to final

from :: IsExpr e => Expr -> e
from (Lit i) = lit i
from (Add e1 e2) = add (from e1) (from e2)

Well-Typed

Summary

We’ll focus on deep embeddings, because we want multiple
interpretations of our programs, in particular:

▶ “real-world” execution,
▶ simulated execution.

We’ll still consider both initial and final style.

Well-Typed

Adding effects

New interface

data Var
data Expr
data Imp a
instance Monad Imp
new :: Imp Var
set :: Var -> Expr -> Imp ()
say :: Var -> Imp ()
var :: Var -> Expr
lit :: Integer -> Expr -- as before
add :: Expr -> Expr -> Expr -- as before

Well-Typed

Example program

fib = do
x <- new
y <- new
z <- new
set x (lit 1)
set y (lit 1)
forever $ do
say x
set z (var x)
set x (var y)
set y (add (var z) (var y))

Well-Typed

A deep embedding?

data Expr =
Lit Integer

| Add Expr Expr
| Var Var

data Imp :: * -> * where
New :: Imp Var
Set :: Var -> Expr -> Imp ()
Say :: Var -> Imp ()

data Var

Well-Typed

A deep embedding?

data Expr =
Lit Integer

| Add Expr Expr
| Var Var

data Imp :: * -> * where
New :: Imp Var
Set :: Var -> Expr -> Imp ()
Say :: Var -> Imp ()

data Var

Two problems:

▶ What about instance Monad Imp ?

▶ What about Var ?

Well-Typed

A deep embedding?

data Expr =
Lit Integer

| Add Expr Expr
| Var Var

data Imp :: * -> * where
New :: Imp Var
Set :: Var -> Expr -> Imp ()
Say :: Var -> Imp ()

ReturnImp :: a -> Imp a
BindImp :: Imp a -> (a -> Imp b) -> Imp b

data Var

Well-Typed

Instances

instance Monad Imp where
return = ReturnImp
(>>=) = BindImp

instance Applicative Imp where
pure = return
(<*>) = ap

instance Functor Imp where
fmap = liftM

Laws are not fulfilled on the syntactic level, therefore there is a proof
obligation for each interpretation.

Or switch to a proper free monad.

Well-Typed

Instances

instance Monad Imp where
return = ReturnImp
(>>=) = BindImp

instance Applicative Imp where
pure = return
(<*>) = ap

instance Functor Imp where
fmap = liftM

Laws are not fulfilled on the syntactic level, therefore there is a proof
obligation for each interpretation.

Or switch to a proper free monad.

Well-Typed

Attempting an interpretation

Idea:

▶ Interpret Imp programs as IO actions.

▶ Represent variables as IORef s.

However, this immediately fails:

execIO :: Imp a -> IO a
execIO New = newIORef 0 -- :: IO (IORef Integer) , not IO Var
...

Because:

New :: Imp Var -> Imp a

We must have the freedom to choose what Var is interpreted as.

Well-Typed

Attempting an interpretation

Idea:

▶ Interpret Imp programs as IO actions.

▶ Represent variables as IORef s.

However, this immediately fails:

execIO :: Imp a -> IO a
execIO New = newIORef 0 -- :: IO (IORef Integer) , not IO Var
...

Because:

New :: Imp Var -> Imp a

We must have the freedom to choose what Var is interpreted as.

Well-Typed

Attempting an interpretation

Idea:

▶ Interpret Imp programs as IO actions.

▶ Represent variables as IORef s.

However, this immediately fails:

execIO :: Imp a -> IO a
execIO New = newIORef 0 -- :: IO (IORef Integer) , not IO Var
...

Because:

New :: Imp Var -> Imp a

We must have the freedom to choose what Var is interpreted as.

Well-Typed

Abstracting from Var

data Expr var =
Lit Integer

| Add (Expr var) (Expr var)
| Var var

data Imp :: * -> * -> * where
New :: Imp var var
Set :: var -> Expr var -> Imp var ()
Say :: var -> Imp var ()

ReturnImp :: a -> Imp var a
BindImp :: Imp var a -> (a -> Imp var b) -> Imp var b

Well-Typed

Interpretation: execution

execIO :: Imp (IORef Integer) a -> IO a
execIO New = newIORef 0
execIO (Set v e) = do
x <- evalIO e
writeIORef v x

execIO (Say v) = do
x <- readIORef v
print x

execIO (ReturnImp x) = return x
execIO (BindImp m k) = execIO m >>= execIO . k

evalIO :: Expr (IORef Integer) -> IO Integer
evalIO (Lit i) = return i
evalIO (Add e1 e2) = liftM2 (+) (evalIO e1) (evalIO e2)
evalIO (Var v) = readIORef v

Well-Typed

How to simulate without IO?

newtype Counter = Counter {getCounter :: Integer}
deriving (Show, Num, Eq, Ord)

data Sim a where
Fresh :: Sim Counter
Insert :: Counter -> Integer -> Sim ()
Lookup :: Counter -> Sim Integer
Message :: String -> Sim ()

ReturnSim :: a -> Sim a
BindSim :: Sim a -> (a -> Sim b) -> Sim b

instance Monad Sim where
return = ReturnSim
(>>=) = BindSim

This is just Phase One, but Sim is quite a bit more low-level
than Imp .

Well-Typed

How to simulate without IO?

newtype Counter = Counter {getCounter :: Integer}
deriving (Show, Num, Eq, Ord)

data Sim a where
Fresh :: Sim Counter
Insert :: Counter -> Integer -> Sim ()
Lookup :: Counter -> Sim Integer
Message :: String -> Sim ()

ReturnSim :: a -> Sim a
BindSim :: Sim a -> (a -> Sim b) -> Sim b

instance Monad Sim where
return = ReturnSim
(>>=) = BindSim

This is just Phase One, but Sim is quite a bit more low-level
than Imp .

Well-Typed

Interpretation: simulation of programs

execSim :: Imp Counter a -> Sim a
execSim New = do
v <- Fresh
Insert v 0
return v

execSim (Set v e) = do
x <- evalSim e
Insert v x

execSim (Say v) = do
x <- Lookup v
Message (show x)

execSim (ReturnImp x) = return x
execSim (BindImp m k) = execSim m >>= execSim . k

Well-Typed

Interpretation: simulation of expressions

evalSim :: Expr Counter -> Sim Integer
evalSim (Lit i) = return i
evalSim (Add e1 e2) = liftM2 (+) (evalSim e1) (evalSim e2)
evalSim (Var v) = Lookup v

Well-Typed

Phase Two

One option is:

type SimResult = Stream (Of String) (State SimState)

Well-Typed

Phase Two

One option is:

type SimResult = Stream (Of String) (State SimState)

A Stream (from the streaming package) is a way to interleave items
and effects:

data Stream f m r =
Step !(f (Stream f m r))

| Effect (m (Stream f m r))
| Return r

data Of a b = !a :> b

instance (Functor f, Monad m) => Monad (Stream f m)
instance Functor f => MonadTrans (Stream f)
...

Well-Typed

Phase Two

One option is:

type SimResult = Stream (Of String) (State SimState)

data SimState = SimState
{ _ctr :: Counter
, _env :: Map Counter Integer
}

ctr :: Lens' SimState Counter
env :: Lens' SimState (Map Counter Integer)

Well-Typed

Phase One to Phase Two

runSim :: Sim a -> SimResult a
runSim Fresh = lift $ do
v <- use ctr
ctr += 1
env %= insert v 0
return v

runSim (Insert v x) = lift $ env %= insert v x
runSim (Lookup v) = lift $ (! v) <$> use env
runSim (Message m) = yield m
runSim (ReturnSim x) = return x
runSim (BindSim m k) = runSim m >>= runSim . k

Well-Typed

Actual simulation

testFib :: [String]
testFib =
evalState
(S.toList_ (S.take 5 (runSim (execSim fib))))
(SimState {_ctr = 0, _env = empty})

GHCi> testFib
["1", "1", "2", "3", "5"]

Well-Typed

Final style?

class
(IsExpr e v, Monad i) => IsImp i e v | i -> e v where

new :: i v
set :: v -> e -> i ()
say :: v -> i ()

class IsExpr e v | e -> v where

var :: v -> e
lit :: Integer -> e
add :: e -> e -> e

Well-Typed

A few observations

Abstraction over Var was important

▶ Fixing such a resource type to a concrete choice can easily limit us
to one (or just a few interpretations).

▶ Be careful with anything like handles, database connections,
variables, stores, or any abstract types where the interface itself
ties you into specific monads.

Well-Typed

No IO

▶ Avoid direct use of IO or MonadIO in your domain-specific
code at all costs.

▶ Try to capture the operations you actually need in the interface
directly. It has the added side effect that it becomes clearer what
exactly the code is allowed and supposed to do.

Well-Typed

Few large interfaces

▶ We only used actual monad transformers at the lowest level,
when implementing Sim .

▶ How exactly we implemented Sim is irrelevant to the rest of the
program (monad transformers, extensible effects, monolithic
monad, . . .).

▶ Too much granularity in interfaces often makes things more
complicated rather than less. Only split if there are real use cases
where you need one without the other, or where the interfaces
really are at different levels.

Well-Typed

Effect-free interfaces are still best

▶ Nothing beats the simplicity of the first scenario.
▶ Even if interpretation require effects, the DSL not necessarily

does.
▶ Write code as pure functions if you can.

Well-Typed

