
The polytable package

Andres Löh
polytable@andres-loeh.de

2003/12/26

Abstract

This package implements a variant of tabular-like environments where
columns can be given a name and entries can flexibly be placed between ar-
bitrary columns. Complex alignment-based layouts, for example for program
code, are possible.

1 Introduction

This package implements a variant of tabular-like environments. We will call these
environments the poly-environments to distinguish them from the standard ones
as provided by the LATEX kernel or the array package.

Other than in standard tables, each column has a name. For instance, the
commands
\column{foo}{l}
\column{bar}{r}
– when used within a poly-environment – define a column with name foo that is
left-aligned, and a column with name bar that is right-aligned.

Once a couple of columns have been defined, the text is specified in a series
of \fromto commands. Instead of specifying text per column in order, separating
columns with &, we give the name of the column where the content should start,
and the name of the column before which the content should stop. To typeset the
text “I’m aligned!” in the column foo, we could thus use the command
\fromto{foo}{bar}{I’m aligned}
Several \fromto-commands can be used to typeset a complete line of the table.
A new line can be started with \nextline.

The strength of this approach is that it implicitly handles cases where different
lines have different alignment properties. Not all column names have to occur in
all lines.

2 A complete example

Figure 1 is an example that is designed to show the capabilities of this package.
In particular, it is not supposed to look beautiful.

1

left first of three second of three third of three right
left middle 1/2 middle 2/2 right
left middle 1/3 middle 2/3 middle 3/3 right
left first of two middle columns second of two middle columns right

Figure 1: Example table

The example table consists of four lines. All lines have some text on the left
and on the right, but the middle part follows two different patterns: the first and
the third line have three middle columnss that should be aligned, the second and
the fourth line have two (right-aligned) middle columns that should be aligned,
but otherwise independent of the three middle columns in the other lines.

Vertical bars are used to clarify where one column ends and the next column
starts in a particular line. Note that the first and the third line are completely
aligned. Likewise, the second and the fourth line are. However, the fact that
the bar after the text “middle 1/2” ends up between the two bars delimiting the
column with “second of three” in it is just determined by the length of the text
“first of two middle columns” in the last line. This text fragment is wider than
the first of the three middle columns, but not wider than the first two of the three
middle columns.

Let’s have a look at the input for the example table:

\begin{ptabular}

\column{left}{|l|}

\column{right}{l|}

\column{m13}{l|}

\column{m23}{l|}

\column{m33}{l|}

\column{m12}{r|}

\column{m22}{r|}

\column{end}{l}

\fromto{left}{m13}{left}

\fromto{m13}{m23}{first of three}

\fromto{m23}{m33}{second of three}

\fromto{m33}{right}{third of three}

\fromto{right}{end}{right}

\nextline

\fromto{left}{m12}{left}

\fromto{m12}{m22}{middle 1/2}

\fromto{m22}{right}{middle 2/2}

\fromto{right}{end}{right}

\nextline

\fromto{left}{m13}{left}

\fromto{m13}{m23}{middle 1/3}

\fromto{m23}{m33}{middle 2/3}

\fromto{m33}{right}{middle 3/3}

\fromto{right}{end}{right}

\nextline

2

\fromto{left}{m12}{left}

\fromto{m12}{m22}{first of two middle columns}

\fromto{m22}{right}{second of two middle columns}

\fromto{right}{end}{right}

\end{ptabular}

First, columns are declared, including the vertical lines. Note that there is a final
column end being declared that is only used as the end column in the \fromto
statements. A future version of this package will probably get rid of the need to
define such a column. After the column definitions, the lines are typeset by a
series of \fromto commands, separated by \nextline. Note that the first and
third column do not use m12, m22. Similarly, the second and fourth column do not
use m13, m23, and m33.

So far, one could achieve the same with an ordinary table environment. The
table would have 6 columns. One left and right, the other four for the middle:
the first and third line would use the first of the four columns, then place the
second entry in a \multicolumn of length 2, and then use the fourth column
for the third entry. Likewise, the other lines would place both their entries in a
\multicolumn of length 2. In fact, this procedure is very similar to the way the
ptabular environment is implemented.

The problem is, though, that we need the information that the first of the two
middle columns ends somewhere in the middle of the second of the three columns,
as observed above. If we slightly modify the texts to be displayed in the middle
columns, this situation changes. Figure 2 shows two variants of the example table.
The input is the same, only that the texts contained in some columns have slightly
changed. As you can see, the separator between the first and second middle column
in the second and fourth lines of the tables now once ends up within the first, once
within the third of the three middle columns of the other lines.

left first of three second of three third of three right
left middle 1/2 middle 2/2 right
left middle 1/3 middle 2/3 middle 3/3 right
left first of two second of two right

left first of three second of three third of three right
left middle 1/2 middle 2/2 right
left middle 1/3 middle 2/3 middle 3/3 right
left the first of two middle columns 2/2 right

Figure 2: Variants of the example table

If one wants the general case using the \multicolumn approach, one thus has
to measure the widths of the entries of the columns to compute their relative
position. In essence, this is what the package does for you.

3

class (Eq a) ⇒ Ord a where
compare :: a → a → Ordering
(<), (≤), (≥), (>) :: a → a → Bool
max ,min :: a → a → Bool

— Minimal complete definition: (≤) or compare
— using compare can be more efficient for complex types
compare x y | x ≡ y = EQ

| x ≤ y = LT
| otherwise = GT

x ≤ y = compare x y 6≡ GT
x < y = compare x y ≡ LT
x ≥ y = compare x y 6≡ LT
x > y = compare x y ≡ GT
max x y | x ≤ y = y

| otherwise = x
min x y | x ≤ y = x

| otherwise = y

Figure 3: Haskell code example

3 Haskell code example

I have written this package mainly for one purpose: to be able to beautifully
align Haskell source code. Haskell is a functional programming language where
definitions are often grouped into several declarations. I’ve seen programmers
exhibit symmetric structures in different lines by adding spaces in their source code
files in such a way that corresponding parts in different definitions line up. On the
other hand, as Haskell allows user-defined infix operators, some programmers like
their symbols to be typeset as LATEX symbols, not as typewriter code. But using
LATEX symbols and a beautiful proportional font usually destroys the carefully
crafted layout and alignment.

With lhs2TEX, there is now a preprocessor available that preserves the source
code’s internal alignment by mapping the output onto polytable’s environments.
Figure 3 is an example of how the output of lhs2TEX might look like.

Of course, this could be useful for other programming languages as well. In
fact, lhs2TEX can be tweaked to process several experimental languages that are
based on Haskell, but I can imagine that this package could generally prove useful
to typeset program code.

4

4 Other applications

Although I have written this package for a specific purpose, I am very much
interested to hear of other potential application areas. Please tell me if you found
a use for this package and do not hesitate to ask for additional features that could
convince you to use the package for something.

5 The lazylist package

Internally, this package makes use of Alan Jeffrey’s excellent lazylist package, which
provides an implementation of the lambda calculus using fully expandable control
sequences. Unfortunately, lazylist.sty is not included in most common TEX
distributions, so you might need to fetch it from CTAN separately.

6 Reference

6.1 The environments

There are currently three environments that this package provides: ptabular andptabular

parray

pboxed

parray are based on (and translated into) the usual tabular and array environ-
ments as provided by the array package. In particular, parray assumes math
mode, whereas ptabular assumes text mode. The third environment, pboxed,
typesets the material in boxes of the calculated length, but in normal paragraph
mode. The advantage is that there can be page breaks within the table. Note
that you should start a new, nonindented paragraph before beginning a pboxed.
All lines in a pboxed should be of equal length, so it might be possible to center
or right-align the material, although this has not been extensively tested.

One more environment is planned: plongtable, a poly-version of the
longtable environment.

The interface is the same for all of the environments.

6.2 The commands

In each of the environments, the following commands can be used (and only these
commands should be used):

With \column{〈columnid〉}{〈spec〉}, a new column 〈columnid〉 is specified.\column

The name of the column can be any sequence of alphanumerical characters. The
〈spec〉 is a format string for that particular column, and it can contain the same
constructs that can be used in format strings of normal tables or arrays (this also
holds for the pboxed environment). However, it should only contain the description
for one column. (I’ve never tested what happens if you do something else, but
you have been warned . . .)

If the save/restore feature (explained below) is not used, \column definitions
are always local to one table. One can define a column multiple times within one

5

table. A warning will be produced, and the second format string will be used for
the complete table.

The call \fromto{〈fromid〉}{〈toid〉}{〈text〉} will typeset 〈text〉 in the current\fromto

line, starting at column 〈fromid〉 and ending before column 〈toid〉, using the format
string specified for 〈fromid〉.

A line of a table usually consists of multiple \fromto statements. Each state-
ment’s starting column should be either the same as the end column of the previous
statement, or it will be assumed that the start column is located somewhere to
the right of the previous end column. The user is responsible to not introduce
cycles in the (partial) order of columns. If such a cycle is specified, the current
algorithm will loop, causing a dimension too large error ultimately. TODO:
catch this error.

The command \nextline ends one line and begins the next. There is\nextline

no need to end the last line. One can pass an optional argument, as in
\nextline[〈dimen〉], that will add 〈dimen〉 extra space between the lines.
TODO: make this command available as \\.

6.3 A warning

The contents of the table are processed multiple times because the widths of
the entries are measured. Global assigments that modify registers and similar
things can thus result in unexpected behaviour. New in v0.7: LATEX counters (i.e.
counters defined by \newcounter) are protected now. They will be reset after
each of the trial runs.

6.4 Saving column width information

WARNING: this feature does only work correctly with the pboxed environment
right now. TODO: make this work with the other environments (this essentially
amounts to implementing a tabbing-like \kill statement for tabular and array;
does that already exist somewhere?).

Sometimes, one might want to reuse not only the same column, but exactly
the same alignment as in a previous table. An example would be a fragment of
program code, which has been broken into several pieces, with documentation
paragraphs added in between.

With \savecolumns[〈setid〉], one can save the information of the current table\savecolumns

\restorecolumns for later reuse. The name setid can be an arbitrary sequence of alphanumeric
characters. It does not share the same namespace as the column names. The
argument is optional; if it is omitted, a default name is assumed. Later, one can
restore the information (multiple times, if needed) in other tables, by issuing a
\restorecolumns[〈setid〉].

This feature requires to pass information backwards in the general case, as
column widths in later environments using one specific column set might influence
the layout of earlier environments. Therefore, information is written into the .aux
file, and sometimes, a warning is given that a rerun is needed. Multiple reruns
might be required to get all the widths right.

6

I have tried very hard to avoid producing rerun warnings infinitely except
if there are really cyclic dependencies between columns. Still, if it happens or
something seems to be broken, it often is a good idea to remove the .aux file and
start over. Be sure to report it as a bug, though.

Figure 4 is an example of the Haskell code example with several comments
inserted. The source of this file shows how to typeset the example.

7 The Code

1 〈∗package〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{polytable}%

4 [2004/02/27 v0.7.2 ‘polytable’ package (Andres Loeh)]

New in v0.7.2: The amsmath package clashes with lazylist: both define the com-
mand \And. Although it would certainly be better to find another name in lazylist,
we take precautions for now. (Note that this will still fail if lazylist is already loaded
– but then it’s not our problem . . .
5 \let\PT@original@And\And

6 \RequirePackage{lazylist}

7 \let\PT@And\And

8 \def\PT@prelazylist

9 {\let\And\PT@And}

10 \def\PT@postlazylist

11 {\let\And\PT@original@And}

12 \PT@postlazylist

13 \RequirePackage{array}

The option debug will cause (a considerable amount of) debugging output to
be printed. The option silent, on the other hand, will prevent certain warnings
from being printed.
14 \DeclareOption{debug}{\AtEndOfPackage\PT@debug}

15 \DeclareOption{silent}{\AtEndOfPackage\PT@silent}

16 \ProcessOptions

First, we declare a couple of registers that we will need later.
17 \newdimen\PT@colwidth

18 %\newdimen\PT@delta

19 \newcount\PT@cols

20 \newcount\PT@table

21 \newif\ifPT@changed

In \PT@allcols, we will store the list of all columns, as a list as provided by the
lazylist package. We initialise it to the empty list, which is represented by \Nil.
In v0.8, we will have a second list that only contains the public columns.
22 \def\PT@allcols{\Nil}

23 %\def\PT@allpubliccols{\Nil}

24 \let\PT@infromto\empty

These are flags and truth values. TODO: Reduce and simplify.
25 \let\PT@currentwidths\empty

7

We introduce a new type class Ord for objects that admit an ordering. It is based
on the Eq class:

class (Eq a) ⇒ Ord a where

The next three lines give the type signatures for all the methods of the class.

compare :: a → a → Ordering
(<), (≤), (≥), (>) :: a → a → Bool
max ,min :: a → a → Bool

— Minimal complete definition: (≤) or compare
— using compare can be more efficient for complex types

As the comment above says, it is sufficient to define either (≤) or compare to get
a complete instance. All of the class methods have default definitions. First, we
can define compare in terms of (≤). The result type of compare is an Ordering,
a type consisting of only three values: EQ for “equality”, LT for “less than”, and
GT for “greater than”.

compare x y | x ≡ y = EQ
| x ≤ y = LT
| otherwise = GT

All the other comparison operators can be defined in terms of compare:

x ≤ y = compare x y 6≡ GT
x < y = compare x y ≡ LT
x ≥ y = compare x y 6≡ LT
x > y = compare x y ≡ GT

Finally, there are default definitions for max and min in terms of (≤).

max x y | x ≤ y = y
| otherwise = x

min x y | x ≤ y = x
| otherwise = y

Figure 4: Commented Haskell code example

8

26 \def\PT@false{0}

27 \def\PT@true{1}

28 \let\PT@inrestore\PT@false

The dimension \PT@delta is currently not used. The dimension comparisons
should probably have a small tolerance, to prevent infinite loops due to rounding
errors. (Can this really happen?)
29 %\PT@delta\hfuzz

\PT@debug

\PT@typeout@

\PT@silent

\PT@warning

Similar to the tabularx package, we add macros to print debugging information to
the log. Depending on package options, we can set or unset them.
30 \def\PT@debug

31 {\def\PT@typeout@ ##1{\typeout{(polytable) ##1}}}

32 \let\PT@typeout@\@gobble

33 \def\PT@warning{\PackageWarning{polytable}}%

34 \def\PT@silent

35 {\let\PT@typeout@\@gobble\let\PT@warning\@gobble}

\PT@rerun This macro can be called at a position where we know that we have to rerun LaTeX
to get the column widths right. It issues a warning at the end of the document.
36 \def\PT@rerun

37 {\PT@typeout@{We have to rerun LaTeX ...}%

38 \AtEndDocument

39 {\PackageWarning{polytable}%

40 {Column widths have changed. Rerun LaTeX.\@gobbletwo}}%

41 \global\let\PT@rerun\relax}

7.1 Macro definition tools

\PT@listopmacro

\PT@consmacro

\PT@appendmacro

This assumes that #2 is a list macro and #3 is a new list element. The macro
#2 should, after the call, expand to the list with the new element #1ed. Because
we don’t know the number of tokens in #3, we use a temporary macro \PT@temp
(which is used frequently throughout the package).
42 \def\PT@listopmacro #1#2#3% #1 #3 to the list #2

43 {\def\PT@temp{#1{#3}}%

44 \expandafter\expandafter\expandafter

45 \def\expandafter\expandafter\expandafter

46 #2\expandafter\expandafter\expandafter

47 {\expandafter\PT@temp\expandafter{#2}}}

48

49 \def\PT@consmacro{\PT@listopmacro\Cons}

50 \def\PT@appendmacro{\PT@listopmacro\Cat}

The follwing two macros can be used to add something to the beginning or the
end of a constrol structure.
51 \def\PT@addbeginmacro #1#2% add #2 to the beginning of #1

52 {\def\PT@temp{#2}%

53 \expandafter\expandafter\expandafter

54 \def\expandafter\expandafter\expandafter

9

55 #1\expandafter\expandafter\expandafter

56 {\expandafter\PT@temp #1}}

57

58 \def\PT@gaddendmacro #1#2% add #2 to the end of #1

59 {\expandafter\gdef\expandafter #1\expandafter{#1#2}}

\PT@enamedef This is much like \@namedef, but it expands #2 once.
60 \def\PT@enamedef #1#2% sets name #1 to the expansion of #2

61 {\expandafter\Twiddle\expandafter\@namedef\expandafter{#2}{#1}}

\PT@adddeftomacroas Given the name of a control structure #1 and a name of another control structure
#2 and an expression #3, we add the definition of #2 to the expansion of #3 to the
macro #1.
62 \def\PT@adddeftomacroas#1#2#3%

63 {\expandafter\expandafter\expandafter

64 \def\expandafter\expandafter\expandafter\PT@temp

65 \expandafter\expandafter\expandafter

66 {\expandafter\expandafter\expandafter\def

67 \expandafter\expandafter\csname #2\endcsname

68 \expandafter{#3}}%

69 \expandafter\expandafter\expandafter\PT@gaddendmacro

70 \expandafter\expandafter\expandafter

71 {\expandafter\expandafter\csname #1\endcsname

72 \expandafter}\expandafter{\PT@temp}}

\PT@adddeftomacro This is a special case of \PT@adddeftomacroas where #3 is the expansion of #2.
73 \def\PT@adddeftomacro#1#2%

74 {\def\PT@temp{\PT@adddeftomacroas{#1}{#2}}%

75 \expandafter\PT@temp\csname #2\endcsname}

\PT@addoptargtomacro

76 \def\PT@addoptargtomacro

77 {\PT@add@argtomacro\PT@makeoptarg}

78 \def\PT@addargtomacro

79 {\PT@add@argtomacro\PT@makearg}

80

81 \def\PT@add@argtomacro#1#2#3%

82 {\expandafter\expandafter\expandafter\gdef

83 \expandafter\expandafter\expandafter\PT@temp

84 \expandafter\expandafter\expandafter{\csname #3\endcsname}%

85 #1%

86 \expandafter\PT@gaddendmacro\expandafter

87 {\expandafter#2\expandafter}\expandafter{\PT@temp}}

88

89 \def\PT@makeoptarg%

90 {\expandafter\def\expandafter\PT@temp\expandafter

91 {\expandafter[\PT@temp]}}

92 \def\PT@makearg%

93 {\expandafter\def\expandafter\PT@temp\expandafter

10

94 {\expandafter{\PT@temp}}}

95

96 %

97 % \begin{macro}{\PT@mtimesn}

98 % Expands to |#1| times |#2|. (Work in progress.)

99 % \begin{macrocode}

100 % \def\PT@mtimesn #1#2%

101 % {\expandafter\PT@mtimtesn@\romannumeral #1011{#2}}

102 % \def\PT@mtimesn@ #1i#2%

103 % {\if#1m%

104 % #2\expandafter\PT@mtimesn@#1i#3}

\PT@gobbleoptional Gobbles one optional argument. Ignores spaces.
105 \newcommand*{\PT@gobbleoptional}[1][]{\ignorespaces}

\PT@origomit Save the original definition of omit.
106 \let\PT@origomit\omit

\PT@disableomitonce Undefines the next use of omit.
107 \def\PT@disableomitonce

108 {\def\omit

109 {\let\omit\PT@origomit}}

7.2 The environment

The general idea is to first scan the contents of the environment and store them
in a token register. In a few test runs, the positions of the column borders are
determined. After that, the columns are sorted and the table is typeset, translating
the named ranges into appropriate calls to \multicolumn.

\beginpolytable This macro starts the environment. It should, however, not be called directly, but
rather in a LATEX environment. We just initialize the token register to the empty
string and then start scanning.

110 \newcommand{\beginpolytable}%

We save the current enclosing LATEX environment in \PT@environment. This will
be the \end we will be looking for, and this will be the environment we manually
close in the end.

111 {\edef\PT@environment{\@currenvir}%

112 \begingroup

113 % new in v0.7: save counters

114 \PT@savecounters

115 \toks@{}% initialise token register

116 \PT@scantoend}

\endpolytable This is just defined for convenience.
117 \let\endpolytable=\relax

11

\PT@scantoend We scan until the next occurence of \endpolytable and store the tokens. Then
we continue with determining the column widths.

118 \long\def\PT@scantoend #1\end #2%

119 {\toks@\expandafter{\the\toks@ #1}%

120 \def\PT@temp{#2}%

121 \ifx\PT@temp\PT@environment

122 \expandafter\PT@getwidths

123 \else

124 \toks@\expandafter{\the\toks@\end{#2}}%

125 \expandafter\PT@scantoend

126 \fi}

\PT@getwidths Here, we make as many test runs as are necessary to determine the correct column
widths.

127 \def\PT@getwidths

We let the \column command initialize a column in the first run.
128 {\let\column\PT@firstrun@column

There is the possibility to save or restore columns. This is new in v0.4.
129 \let\savecolumns\PT@savewidths

130 \let\restorecolumns\PT@restorewidths

We always define a pseudo-column @begin@. This denotes the begin of a row.
131 \column{@begin@}{@{}l@{}}

132 \PT@cols=0\relax%

The two other commands that are allowed inside of the environment, namely
\fromto and \nextline are initialized. The \fromto command may increase the
current widths of some columns, if necessary, whereas \nextline just resets the
counter that keeps track of the “current” column, to 0.

133 \let\fromto\PT@fromto

134 \let\nextline\PT@resetcolumn

135 \PT@changedfalse % nothing has changed so far

136 \PT@resetcolumn % we are at the beginning of a line

Now we are ready for a test run.
137 \the\toks@

After the first run, we print extra information. We use the contents of the macro
\column to check whether we are in the first run, because it will be reset below
for all other runs to do nothing.

138 \ifx\column\PT@otherrun@column

139 \else

140 % we are in first run, print extra info

141 \PT@typeout@{Number of columns: \the\PT@cols}%

142 \PT@prelazylist

143 \PT@typeout@{Column list: \Print\PT@allcols}%

144 \PT@postlazylist

145 \fi

12

The columns are initialised after the first run. Therefore, we make sure that the
\column command won’t do much in the other runs. Also, saving and restoring
columns is no longer needed.

146 \let\PT@firstrun@column\PT@otherrun@column

147 \let\savecolumns\PT@gobbleoptional

148 \let\restorecolumns\PT@gobbleoptional

149 \let\PT@savewidths\PT@gobbleoptional

150 \let\PT@restorewidths\PT@gobbleoptional

New in v0.7.1: restore counters after each trial run.
151 \PT@restorecounters

If some column widths have indeed changed in the test run, this will be indicated
by the flag \ifPT@changed. Depending on this flag, we will either loop and rerun,
or we will continue in \PT@sortcols.

152 \ifPT@changed

153 % we need to rerun if something has changed

154 \expandafter\PT@getwidths

155 \else

156 % we are done and can do the sorting

157 \PT@typeout@{Reached fixpoint.}%

158 \expandafter\PT@sortcols

159 \fi}

\PT@savecounters Save all LATEX counters so that they can be restored after a trial run.
160 \def\PT@savecounters

161 {\begingroup

162 \def\@elt ##1%

163 {\global\csname c@##1\endcsname\the\csname c@##1\endcsname}%

164 \xdef\PT@restorecounters{\cl@@ckpt}%

165 \endgroup}

\PT@sortcols The column borders are sorted by their horizontal position on the page (width).
The they get numbered consecutively. After that, we are well prepared to typeset
the table.

166 \def\PT@sortcols

First, we sort the list. To make sure that the computation is only executed
once, we save the sorted list by means of an \edef. Sorting happens with
lazylist’s \Insertsort which expects an order and a list. As order, we provide
\PT@ltwidth, which compares the widths of the columns. To prevent expansion of
the list structure, given by \Cons and \Nil, we fold the list with the \noexpanded
versions of the list constructors.

167 {\PT@prelazylist

168 \edef\PT@sortedlist

169 {\Foldr{\noexpand\Cons}{\noexpand\Nil}%

170 {\Insertsort\PT@ltmax\PT@allcols}}%

171 \PT@typeout@{Sorted columns: \Print\PT@sortedlist}%

172 \PT@postlazylist

13

Now, each column is assigned a number, starting from zero.
173 \PT@cols=0\relax%

174 \PT@prelazylist

175 \Execute{\Map\PT@numbercol\PT@sortedlist}%

176 \PT@postlazylist

177 \PT@typeout@{Numbered successfully, last column is \StripColumn\PT@lastcol}%

Now is a good time to save table information, if needed later. We will also compare
our computed information with the restored maximum widths.

178 \ifx\PT@currentwidths\empty

179 \else

180 \PT@typeout@{Saving table information for \PT@currentwidths .}%

181 \expandafter\PT@saveinformation\expandafter{\PT@currentwidths}%

182 \fi

Finally, we can typeset the table.
183 \PT@typeset}

\PT@typeset

184 \def\PT@typeset

As a first step, we generate the table’s preamble and print it for debugging pur-
poses.

185 {\PT@typeout@{Typesetting the table ...}%

186 \PT@prelazylist

187 \edef\PT@temp{@{}\Execute{\Map\PT@preamble\PT@sortedlist}}%

188 \PT@postlazylist

189 %\PT@typeout@{Preamble: \PT@temp}%

Now, we redefine \fromto and \nextline to their final meaning in the type-
setting process. The \fromto statements will be replaced by appropriate calls to
\multicolumn, whereas the \nextline will again reset the counter for the current
column, but also call the table environment’s newline macro.

190 \let\fromto\PT@multicolumn

191 \PT@resetcolumn % we are at the beginning of a line

192 \let\nextline=\PT@resetandcr

Now we start the tabular environment with the computed preamble.
193 \expandafter\PT@begin\expandafter{\PT@temp}%

Run, and this time, typeset, the contents.
194 \the\toks@

End the array, close the group, close the environment. We are done!
195 \PT@end

196 \endgroup

197 \PT@typeout@{Finished.}%

198 \expandafter\end\expandafter{\PT@environment}}%

14

7.3 The trial runs

For each column, we store information in macros that are based on the column
name. We store a column’s type (i.e. its contribution to the table’s preamble), its
current width (i.e. its the horizontal position where the column will start on the
page), and later, its number, which will be used for the \multicolumn calculations.

\PT@firstrun@column During the first trial run, we initialise all the columns. We store their type, as
declared in the \column command inside the environment, and we set their initial
width to 0pt. Furthermore, we add the column to the list of all available columns,
increase the column counter, and tell TEX to ignore spaces that might follow the
\column command. New in v0.4.1: We make a case distinction on an empty type
field to prevent warnings for columns that have been defined via \PT@setmaxwidth
– see there for additional comments. New in v0.4.2: We allow redefinition of width
if explicitly specified, i.e. not equal to 0pt.

199 \newcommand\PT@firstrun@column[3][0pt]%

200 {\@ifundefined{PT@col@#2.type}%

201 {\PT@typeout@{Defining column #2 at #1.}%

202 \@namedef{PT@col@#2.type}{#3}%

203 \@namedef{PT@col@#2.width}{#1}% initialize the width of the column

204 % add the new column to the (sortable) list of all columns

205 \PT@consmacro\PT@allcols{PT@col@#2}%

206 \advance\PT@cols by 1\relax}%

207 {\expandafter\ifx\csname PT@col@#2.type\endcsname\empty

208 \relax % will be defined in a later table of the same set

209 \else

210 \PT@warning{Redefining column #2}%

211 \fi

212 \@namedef{PT@col@#2.type}{#3}%

213 \expandafter\ifdim#1>0pt\relax

214 \PT@typeout@{Redefining column #2 at #1.}%

215 \@namedef{PT@col@#2.width}{#1}%

216 \fi

217 }%

For the case that we are saving and there is not yet information from the .aux
file, we define the .max and .trusted fields if they are undefined. If information
becomes available later, it will overwrite these definitions.

218 \@ifundefined{PT@col@#2.max}%

219 {\@namedef{PT@col@#2.max}{#1}%

220 \expandafter\let\csname PT@col@#2.trusted\endcsname\PT@true}{}%

221 \ignorespaces}

\PT@otherrun@column In all but the first trial run, we do not need any additional information about the
columns any more, so we just gobble the two arguments, but still ignore spaces.

222 \newcommand\PT@otherrun@column[3][]%

223 {\ignorespaces}

\PT@checkcoldefined This macro verifies that a certain column is defined and produces an error message
if it is not.

15

224 \def\PT@checkcoldefined #1%

225 {\@ifundefined{PT@col@#1.type}%

226 {\PackageError{polytable}{Undefined column #1}{}}{}}%

\PT@fromto Most of the work during the trial runs is done here. We increase the widths of
certain columns, if necessary. Note that there are two conditions that have to hold
if \fromto{A}{B} is encountered:

• the width of A has to be at least the width of the current (i.e. previous)
column.

• the width of B has to be at least the width of A, plus the width of the entry.

227 \def\PT@fromto #1#2#3%

We start by checking a switch.
228 {\PT@infromto

229 \def\PT@infromto{%

230 \PackageError{polytable}{Nested fromto}{}}%

Next, we check that both columns are defined.
231 \PT@checkcoldefined{#1}%

232 \PT@checkcoldefined{#2}%

Here, we check the first condition.
233 \def\PT@temp{PT@col@#1}%

234 \ifx\PT@currentcol\PT@temp

235 \PT@typeout@{No need to skip columns.}%

236 \else

237 \PT@colwidth=\expandafter\@nameuse\expandafter

238 {\PT@currentcol.width}\relax

239 \ifdim\PT@colwidth>\csname PT@col@#1.width\endcsname\relax

240 % we need to change the width

241 \PT@typeout@{s #1: old=\@nameuse{PT@col@#1.width} new=\the\PT@colwidth}%

242 \PT@changedtrue

243 \PT@enamedef{PT@col@#1.width}{\the\PT@colwidth}%

244 \fi

The same for the untrusted .max values.
245 \PT@colwidth=\expandafter\@nameuse\expandafter

246 {\PT@currentcol.max}\relax

247 \ifdim\PT@colwidth>\csname PT@col@#1.max\endcsname\relax

248 % we need to change the width

249 \PT@typeout@{S #1: old=\@nameuse{PT@col@#1.max} new=\the\PT@colwidth}%

250 \PT@changedtrue

251 \PT@checkrerun

252 \PT@enamedef{PT@col@#1.max}{\the\PT@colwidth}%

253 \fi

254 \ifnum\csname PT@col@#1.trusted\endcsname=\PT@false\relax

255 \ifdim\PT@colwidth=\csname PT@col@#1.max\endcsname\relax

256 \PT@typeout@{#1=\the\PT@colwidth\space is now trusted}%

257 \expandafter\let\csname PT@col@#1.trusted\endcsname\PT@true%

16

258 \fi

259 \fi

260 \fi

To test the second condition, we have to test-typeset the contents of the column,
contained in #3. We prepare a “safe environment” for these contents. We deter-
mine whether we are in math mode or not, put the contents into an hbox in the
same mode, and we are typesetting the contents in the same environment as we
will typeset the table in the end.

261 \begingroup

262 \ifmmode

263 \let\d@llarbegin=$%$

264 \let\d@llarend=$%$

265 \let\col@sep=\arraycolsep

266 \else

267 \let\d@llarbegin=\begingroup

268 \let\d@llarend=\endgroup

269 \let\col@sep=\tabcolsep

270 \fi

271 %\def\PT@currentcol{PT@col@#1}%

272 %\ifx\PT@currentcol\PT@nullcol

273 %\else

274 % \PT@addbeginmacro\PT@currentpreamble{@{}}%

275 %\fi

276 \expandafter\expandafter\expandafter

277 \def\expandafter\expandafter\expandafter\PT@currentpreamble

278 \expandafter\expandafter\expandafter

279 {\csname PT@col@#1.type\endcsname}%

280 \setbox0=\hbox{%

281 \expandafter\@mkpream\expandafter{\PT@currentpreamble}%

282 \def\@sharp{\strut #3}%

283 %\show\@preamble

284 \@preamble}%

285 \expandafter\gdef\expandafter\PT@temp\expandafter{\the\wd0}%

286 \endgroup

Now begins the real comparison.
287 \global\PT@colwidth=\@nameuse{PT@col@#1.width}%

288 \global\advance\PT@colwidth by \PT@temp\relax%

289 \ifdim\PT@colwidth>\csname PT@col@#2.width\endcsname\relax

290 % we need to change the width

291 \PT@typeout@{c #2:

292 old=\@nameuse{PT@col@#2.width}

293 new=\the\PT@colwidth}%

294 \PT@changedtrue

295 \PT@enamedef{PT@col@#2.width}{\the\PT@colwidth}%

296 \fi

And again, we have to do the same for the untrusted maximums.
297 \global\PT@colwidth=\@nameuse{PT@col@#1.max}%

298 \global\advance\PT@colwidth by \PT@temp\relax%

17

299 \ifdim\PT@colwidth>\csname PT@col@#2.max\endcsname\relax

300 % we need to change the width

301 \PT@typeout@{C #2:

302 old=\@nameuse{PT@col@#2.max}

303 new=\the\PT@colwidth}%

304 \PT@changedtrue

305 \PT@checkrerun

306 \PT@enamedef{PT@col@#2.max}{\the\PT@colwidth}%

307 \fi

308 \ifnum\csname PT@col@#2.trusted\endcsname=\PT@false\relax

309 \ifdim\PT@colwidth=\csname PT@col@#2.max\endcsname\relax

310 \PT@typeout@{#2=\the\PT@colwidth\space is now trusted}%

311 \expandafter\let\csname PT@col@#2.trusted\endcsname\PT@true%

312 \fi

313 \fi

Finally, we update the current column to #2, and, of course, we ignore spaces after
the \fromto command.

314 \def\PT@currentcol{PT@col@#2}%

315 \let\PT@infromto\empty

316 \ignorespaces}%

\PT@checkrerun If we have changed something with the trusted widths, we have to check whether
we are in a situation where we are using previously defined columns. If so, we
have to rerun LATEX.

317 \def\PT@checkrerun

318 {\ifnum\PT@inrestore=\PT@true\relax

319 \PT@rerun

320 \fi}

\PT@resetcolumn At the end of a line, we reset the current column to the special column @begin@.
321 \newcommand*{\PT@resetcolumn}[1][]%

322 {\let\PT@currentcol\PT@nullcol}

\PT@nullcol The name of the @begin@ column as a macro, to be able to compare to it with
\ifx.

323 \def\PT@nullcol

324 {PT@col@@begin@}

7.4 Sorting and numbering the columns

Not much needs to be done here, all the work is done by the macros supplied by
the lazylist package. We just provide a few additional commands to facilitate their
use.

\Execute

\Sequence

With \Execute, a list of commands (with sideeffects) can be executed in sequence.
Usually, first a command will be mapped over a list, and then the resulting list
will be executed.

325 \def\Execute{\Foldr\Sequence\empty}

326 \def\Sequence #1#2{#1#2}

18

\ShowColumn This is a debugging macro, that is used to output the list of columns in a pretty
way. The columns internally get prefixes to their names, to prevent name conflicts
with normal commands. In the debug output, we gobble this prefix again.

327 \def\ShowColumn #1%

328 {\ShowColumn@#1\ShowColumn@}

329 \def\ShowColumn@ PT@col@#1\ShowColumn@

330 {#1 }

331 \def\StripColumn #1%

332 {\expandafter\StripColumn@#1\StripColumn@}

333 \def\StripColumn@ PT@col@#1\StripColumn@

334 {#1}

\Print Prints a list of columns, using \ShowColumn.
335 \def\Print#1{\Execute{\Map\ShowColumn#1}}

\PT@TeXif This is an improved version of lazylist’s \TeXif. It does have an additional \relax
to terminate the condition. The \relax is gobbled again to keep it fully expand-
able.

336 \def\PT@TeXif #1%

337 {\expandafter\@gobble#1\relax

338 \PT@gobblefalse

339 \else\relax

340 \gobbletrue

341 \fi}

342 \def\PT@gobblefalse\else\relax\gobbletrue\fi #1#2%

343 {\fi #1}

\PT@ltmax The order by which the columns are sorted is given by the order on their (un-
trusted) widths.

344 \def\PT@ltmax #1#2%

345 {\PT@TeXif{\ifdim\csname #1.max\endcsname<\csname #2.max\endcsname}}

\PT@numbercol This assigns the next consecutive number to a column. We also reassign
PT@lastcol to remember the final column.

346 \def\PT@numbercol #1%

347 {%\PT@typeout@{numbering #1 as \the\PT@cols}%

348 \PT@enamedef{#1.num}{\the\PT@cols}%

349 \def\PT@lastcol{#1}%

350 \advance\PT@cols by 1\relax}

7.5 Typesetting the table

\PT@preamble The table’s preamble is created by mapping this function over the column list and
then \Executeing . . . New: We always use l, as the specific type is always given
by the \multicolumn. Yet new: We use @{}l@{}, to prevent column separation
space from being generated.

351 \def\PT@preamble #1%

352 % {\csname #1.type\endcsname}

19

353 % {l}

354 {l@{}}

Remember that there are three important macros that occur in the body of
the polytable: \column, \fromto, and \nextline. The \column macro is only
really used in the very first trial run, so there is nothing new we have to do here,
but the other two have to be redefined.

\PT@resetandcr This is what \nextline does in the typesetting phase. It resets the current col-
umn, but it also calls the table environment’s newline macro \\ . . . If we are not in
the last column, we insert an implicit fromto. This is needed for the boxed envi-
ronment to make each column equally wide. Otherwise, if the boxed environment
is typeset in a centered way, things will go wrong.

355 \newcommand{\PT@resetandcr}[1][0pt]%

356 {\ifx\PT@currentcol\PT@lastcol

357 \else

358 \ifx\PT@currentcol\PT@nullcol

359 \edef\PT@currentcol{\Head{\Tail\PT@sortedlist}}%

360 \fi

361 \edef\PT@currentcol@{\StripColumn\PT@currentcol}%

362 \edef\PT@lastcol@

363 {\StripColumn\PT@lastcol}%

364 \PT@typeout@{adding implicit fromto from \PT@currentcol@

365 \space to \PT@lastcol@}%

366 \expandafter\expandafter\expandafter\fromto

367 \expandafter\expandafter\expandafter{%

368 \expandafter\expandafter\expandafter\PT@currentcol@

369 \expandafter}\expandafter{\PT@lastcol@}{}%

370 \fi

371 \PT@typeout@{Next line ...}%

372 \PT@resetcolumn\\[#1]}

\PT@multicolumn All the \fromtos are expanded into \multicolumn calls, which is achieved by
this quite tricky macro. Part of the trickyness stems from the fact that a
\multicolumn’s expansion starts with \omit which is a plain TEX primitive that
causes the template for a table column to be ignored. But \omit has to be the
first token (after expansion) in a column to be valid, which is why the alignment
tabs & and the \multicolumn calls have to be close to each other. It would maybe
be better to call \omit manually and hack \multicolumn later!!

This macro gets three arguments. The first is the column in which the entry
begins, the second is the column before which the entry stops, and the third
contains the contents that should be typeset in this range.

373 \def\PT@multicolumn #1#2#3%

We start by producing an \omit to indicate that we want to ignore the column
format that has been specified in the table header. After that, we disable the
\omit command, because we will later call \multicolumn which contains another
one. A second \omit would usually cause an error. TODO: Make this work to
simplify the rest. For now, we don’t use this.

20

374 {%\omit\PT@disableomitonce

We skip ahead until we are in the column in which the entry should start. For
this, we store the number of the column we want to start in and subtract the
current columns number. If the current column is the null column, we have to
adjust by −1 which is not nice, but necessary . . . In 0.4.3: added missing relax
after \global\advance.

375 % skip to current position

376 \global\PT@cols=\@nameuse{PT@col@#1.num}%

377 \global\advance\PT@cols

378 by -\expandafter\csname\PT@currentcol.num\endcsname\relax

379 \ifx\PT@currentcol\PT@nullcol

380 \global\advance\PT@cols by -1\relax%

381 \fi

We now skip by inserting alignment tabs and using a multicolumn with no content.
It might be nicer to just use as many tabs as necessary, because we could do with
less case distinctions. The current value of \PT@cols indicates how many tabs we
have to insert, minus one. We will insert that one tab (which is the minimum we
have to insert) just before we insert the content, and first deal with the extra tabs.

382 \PT@typeout@{skipping:

383 nf=\expandafter\ShowColumn

384 \expandafter{\PT@currentcol}nt=#1 %

385 from=\expandafter

386 \csname\PT@currentcol.num\endcsname\space

387 to=\@nameuse{PT@col@#1.num}}%

388 \ifnum\PT@cols>0\relax

So there are extra tabs necessary.
389 \ifnum\PT@cols>1\relax

We can use a multicolumn to save time.
390 \global\advance\PT@cols by -1\relax

391 \PT@typeout@{after next &, multicolumn \the\PT@cols\space blank}%

392 \PT@NextCol

393 \multicolumn{\the\PT@cols}{@{}l@{}}{}%

394 \fi

395 \PT@NextCol

396 \fi

We now are in the correct column and can print the contents. Again, we have
to check if we have to use a \multicolumn. If we do, we will use the formatting
type of the first column that it spans, in contrast to normal \multicolumns which
always take an extra parameter to determine how to format their contents. An
optional parameter should be introduced here to make overriding the default tem-
plate possible!! New: we always use a \multicolumn, otherwise spacing will be
inconsistent sometimes.

397 \global\PT@cols=\@nameuse{PT@col@#2.num}%

398 \global\advance\PT@cols by -\@nameuse{PT@col@#1.num}\relax%

399 %\ifnum\PT@cols>1\relax

21

400 % we always skip one column

401 \PT@typeout@{after next &,

402 putting text in \the\PT@cols\space multicol}%

403 \PT@typeout@{nf=#1 nt=#2 %

404 from=\@nameuse{PT@col@#1.num}

405 to=\@nameuse{PT@col@#2.num}}%

406 \expandafter\global\expandafter\let\expandafter\PT@temp

407 \csname PT@col@#1.type\endcsname%

408 \PT@NextCol

409 % use multicolumn

410 \expandafter\multicolumn

411 \expandafter{\expandafter\the\expandafter\PT@cols

412 \expandafter}\expandafter{\PT@temp}{#3}%

413 %\PT@typeout@{!!!!}%

414 %\else

415 % \PT@NextCol

416 % #3%

417 %\fi

We reset the current column to #2 and ignore spaces after the command. Then
we are done . . .

418 % set current column

419 \def\PT@currentcol{PT@col@#2}%

420 \ignorespaces}%

\PT@NextCol We hide the tab & in a macro, mostly to be able to add debugging output.
421 \def\PT@NextCol

422 {\PT@typeout@{ & }%

423 &}%

\PT@placeinbox This macro is an alternative for \PT@multicolumn. It can be used to produce
a simple box-based output instead of a table. We use the precomputed width
information to typeset the contents of the table in aligned boxes. The arguments
are the same as for \PT@multicolumn, i.e. the start and the end columns, plus the
contents.

424 \def\PT@placeinbox#1#2#3%

We start by computing the amount of whitespace that must be inserted before the
entry begins. We then insert that amount of space.

425 {\PT@colwidth=\@nameuse{PT@col@#1.max}%

426 \advance\PT@colwidth by -\expandafter\csname\PT@currentcol.max\endcsname

427 \leavevmode

428 \hb@xt@\PT@colwidth{%

429 \expandafter\@mkpream\expandafter{@{}l@{}}%

430 \let\@sharp\empty%

431 %\show\@preamble

432 \@preamble}%

433 % We continue by computing the width of the current entry.

434 % \begin{macrocode}

435 \PT@colwidth=\@nameuse{PT@col@#2.max}%

22

436 \advance\PT@colwidth by -\@nameuse{PT@col@#1.max}\relax%

In the previous version, we really generated a hbox at this place. However, this is
not so nice with respect to spacing and tabular specifiers. Therefore, we now use
either an array or a tabular environment that can reuse the given specifier.

437 \ifmmode

438 \PT@typeout@{*math mode*}%

439 \let\d@llarbegin=$%$

440 \let\d@llarend=$%$

441 \let\col@sep=\arraycolsep

442 \else

443 \PT@typeout@{*text mode*}%

444 \let\d@llarbegin=\begingroup

445 \let\d@llarend=\endgroup

446 \let\col@sep=\tabcolsep

447 \fi

448 %\def\PT@currentcol{PT@col@#1}%

449 \expandafter\expandafter\expandafter

450 \def\expandafter\expandafter\expandafter\PT@currentpreamble

451 \expandafter\expandafter\expandafter

452 {\csname PT@col@#1.type\endcsname}%

453 %\ifx\PT@currentcol\PT@nullcol

454 %\else

455 % \PT@addbeginmacro\PT@currentpreamble{@{}}%

456 %\fi

Now we proceed very much like in the test run(s), but we really output the box,
and we use a specific width.

457 \hb@xt@\PT@colwidth{%

458 \expandafter\@mkpream\expandafter{\PT@currentpreamble}%

459 \def\@sharp{\strut #3}%

460 %\show\@preamble

461 \@preamble}%

Finally, we have to reset the current column and ignore spaces.
462 \def\PT@currentcol{PT@col@#2}%

463 \ignorespaces}%

7.6 Saving and restoring column widths

Column width information can be saved under a name and thus be reused in
other tables. The idea is that the command \savecolumns can be issued inside
a polytable to save the current column information, and \restorecolumns can
be used to make that information accessible in a later table. All tables using the
same information should have the same column widths, which means that some
information might need to be passed back. Therefore, we need to write to an
auxiliary file. TODO: As implemented now, this only really works in conjunction
with the pboxed environment.

Both \savecolumns and \restorecolumns are mapped to the internal com-
mands \PT@savewidths and \PT@restorewidths. Both take an optional argu-

23

ment specifying a name for the column width information. Thereby, multiple sets
of such information can be used simultaneously.

One important thing to consider is that the widths read from the auxiliary file
must not be trusted. The user may have edited the source file before the rerun,
and therefore, the values read might actually be too large (or too small, but this
is less dangerous).

The way we solve this problem is to distinguish two width values per column:
the trusted width, only using information from the current run, and the untrusted
width, incorportating information from the .aux file. An untrusted width can
become (conditionally) trusted if it is reached in the computation with respect to
an earlier column. (Conditionally, because its trustworthiness still depends on the
earlier columns being trustworthy.) In the end, we can check whether all untrusted
widths are conditionally trusted.

We write the final, the maximum widths, into the auxiliary file. We perform
the write operation when we are sure that a specific set is no longer used. This
is the case when we save a new set under the same name, or at the end of the
document. The command \PT@verifywidths takes care of this procedure. This
command will also check if a rerun is necessary, and issue an appropriate warning
if that should be the case.

\PT@setmaxwidth First, we need a macro to help us interpreting the contents of the .aux file. New
v0.4.1: We need to define the restored columns with the \column command, be-
cause otherwise we will have problems in the case that later occurences of tables in
the document that belong to the same set, but define additional columns. (Rerun
warnings appear ad infinitum.) In v0.4.2: columns with width 0.0 are now always
trusted.

464 \newcommand*{\PT@setmaxwidth}[3][\PT@false]% #2 column name, #3 maximum width

465 {\@namedef{PT@col@#2.max}{#3}%

466 \ifdim#3=0pt\relax

467 \expandafter\let\csname PT@col@#2.trusted\endcsname=\PT@true%

468 \else

469 \expandafter\let\csname PT@col@#2.trusted\endcsname=#1%

470 \fi

471 \column{#2}{}}

\PT@loadtable Now, we can load table information that has been read from the .aux file. Note
that a \csname construct expands to \relax if undefined.

472 \def\PT@loadtable#1% #1 table id number

473 {%\expandafter\show\csname PT@restore@\romannumeral #1\endcsname

474 %\show\column

475 \PT@typeout@

476 {Calling \expandafter\string

477 \csname PT@restore@\romannumeral #1\endcsname.}%

478 \let\maxcolumn\PT@setmaxwidth

479 %\expandafter\show\csname PT@load@\romannumeral #1\endcsname

480 \csname PT@restore@\romannumeral #1\endcsname}

24

\PT@loadtablebyname Often, we want to access table information by a column width set name. We
make the maximum column widths accessible, but also the information from the
previous table that has been using the same column width set.

481 \def\PT@loadtablebyname#1% #1 set name

482 {\PT@typeout@{Loading table information for column width set #1.}%

483 \expandafter\PT@loadtable\expandafter{\csname PT@widths@#1\endcsname}}%

484 % \advance\PT@cols by \PT@restoredcols\relax

485 % \expandafter\PT@appendmacro\expandafter\PT@allcols

486 % \expandafter{\PT@restoredallcols}}

\PT@saveinformation In each table for which the widths get reused (i.e., in all tables that use either
\savecolumns or \restorecolumns, we have to store all important information
for further use.

487 \def\PT@saveinformation#1% #1 set name

488 {\expandafter\def\expandafter\PT@temp\expandafter

489 {\csname PT@widths@#1\endcsname}%

490 \expandafter\def\expandafter\PT@temp\expandafter

491 {\csname PT@restore@\romannumeral\PT@temp\endcsname}%

492 \expandafter\gdef\PT@temp{}% start empty

493 % this is: \Execute{\Map{\PT@savecolumn{\PT@temp}}\PT@sortedlist}

494 \expandafter\Execute\expandafter{\expandafter

495 \Map\expandafter{\expandafter\PT@savecolumn

496 \expandafter{\PT@temp}}\PT@sortedlist}}

\PT@savecolumn A single column is saved by this macro.
497 \def\PT@savecolumn#1#2% #1 macro name, #2 column name

498 {\PT@typeout@{saving column #2 in \string #1 ...}%

499 \def\PT@temp{#2}%

500 \ifx\PT@temp\PT@nullcol

501 \PT@typeout@{skipping nullcol ...}%

502 \else

503 \PT@typeout@{max=\csname #2.max\endcsname, %

504 width=\csname #2.width\endcsname, %

505 trusted=\csname #2.trusted\endcsname}%

506 % we need the column command in here

507 % we could do the same in \column, but then the location of

508 % \save / \restore matters ...

509 \PT@gaddendmacro{#1}{\maxcolumn}%

510 \ifnum\csname #2.trusted\endcsname=\PT@true\relax

511 \PT@gaddendmacro{#1}{[\PT@true]}%

512 \fi

513 \edef\PT@temp{\StripColumn{#2}}%

514 \PT@addargtomacro{#1}{PT@temp}%

515 \PT@addargtomacro{#1}{#2.max}%

516 \PT@gaddendmacro{#1}{\column}%

517 \PT@addoptargtomacro{#1}{#2.width}%

518 \edef\PT@temp{\StripColumn{#2}}%

519 \PT@addargtomacro{#1}{PT@temp}%

520 \PT@addargtomacro{#1}{#2.type}%

25

521 %\show#1%

522 \fi

523 }

\PT@savewidths If we really want to save column width information, then the first thing we should
worry about is that there might already have been a set with the name in question.
Therefore, we will call \PT@verifywidths for that set. In the case that there is
no set of this name yet, we will schedule the set for verification at the end of
document.

524 \newcommand*{\PT@savewidths}[1][default@]

525 {\PT@typeout@{Executing \string\savecolumns [#1].}%

526 \def\PT@currentwidths{#1}%

527 \PT@verifywidths{#1}%

We now reserve a new unique number for this column width set by increasing the
\PT@table counter. We then associate the given name (or default@) with the
counter value and restore the widths from the .aux file if they are present.

528 \global\advance\PT@table by 1\relax

529 \expandafter\xdef\csname PT@widths@#1\endcsname

530 {\the\PT@table}%

531 \PT@loadtable{\PT@table}%

532 \ignorespaces}

\PT@restorewidths Restoring information is quite simple. We just load all information available.
533 \newcommand*{\PT@restorewidths}[1][default@]

534 {\PT@typeout@{Executing \string\restorecolumns [#1].}%

535 \def\PT@currentwidths{#1}%

536 \let\PT@inrestore\PT@true

537 \PT@loadtablebyname{#1}%

538 \ignorespaces}

\PT@comparewidths

539 \def\PT@comparewidths#1% #1 full column name

540 {\@ifundefined{#1.max}%

541 {\PT@typeout@{computed width for #1 is fine ...}}%

542 {\ifdim\csname #1.max\endcsname>\csname #1.width\endcsname\relax

543 \PT@typeout@{Preferring saved width for \StripColumn{#1}.}%

544 \PT@changedtrue

545 \PT@colwidth=\@nameuse{#1.max}\relax

546 \PT@enamedef{#1.width}{\the\PT@colwidth}%

547 \fi}}

\PT@trustedmax

548 \def\PT@trustedmax#1%

549 {\PT@TeXif{\ifnum\csname #1.trusted\endcsname=\PT@true}}

\PT@equalwidths

550 \def\PT@equalwidths#1% #1 full column name

551 {\@ifundefined{#1.max}{}%

26

552 {\ifdim\csname #1.max\endcsname=\csname #1.width\endcsname\relax

553 \PT@typeout@{col #1 is okay ...}%

554 \else

555 \PT@rerun% a rerun is needed

556 \fi}}

\PT@verifywidths

557 \def\PT@verifywidths#1% #1 column width set name

558 {\@ifundefined{PT@widths@#1}%

559 {\PT@typeout@{Nothing to verify yet for set #1.}%

560 \PT@typeout@{Scheduling set #1 for verification at end of document.}%

561 \AtEndDocument{\PT@verifywidths{#1}}}%

562 {\PT@typeout@{Verifying column width set #1.}%

563 \expandafter\PT@verify@widths\expandafter

564 {\csname PT@widths@#1\endcsname}{#1}}}

565

566 \def\PT@verify@widths#1#2% #1 set id number, #2 set name

567 {\@ifundefined{PT@restore@\romannumeral #1}{}%

568 {\begingroup

569 \let\column\PT@firstrun@column

570 \PT@cols=0\relax%

571 \def\PT@allcols{\Nil}%

572 \PT@loadtablebyname{#2}%

573 \PT@table=#1\relax

574 % nullcolumn is not loaded, therefore:

575 \expandafter\def\csname\PT@nullcol .width\endcsname{0pt}%

576 % checking trust

577 \PT@prelazylist

578 \All{\PT@trustedmax}{\PT@allcols}%

579 {\PT@typeout@{All maximum widths can be trusted -- writing .max!}%

580 \PT@save@table{.max}}%

581 {\PT@typeout@{Untrustworthy maximums widths -- writing .width!}%

582 \PT@rerun

583 \PT@save@table{.width}}%

584 \PT@postlazylist

585 \endgroup}%

586 \PT@typeout@{Verification for #2 successful.}}

\PT@save@table Here we prepare to write maximum column widths to the .aux file.
587 \def\PT@save@table#1%

588 {\PT@typeout@{Saving column width information.}%

589 \if@filesw

590 \PT@prelazylist

591 {\immediate\write\@auxout{%

592 \gdef\expandafter\noexpand

593 \csname PT@restore@\romannumeral\PT@table\endcsname

594 {\Execute{\Map{\PT@write@column{#1}}\PT@allcols}}}}%

595 \PT@postlazylist

596 \fi}

27

\PT@write@column We define the column command to write to the file.
597 \def\PT@write@column #1#2%

598 {\noexpand\maxcolumn^^J%

599 {\StripColumn{#2}}%

600 {\@nameuse{#2#1}}}%

7.7 The user environments

It remains to define the three environments to be called by the user.
601 \newenvironment{ptabular}[1][c]%

602 {\def\PT@begin{\tabular[#1]}%

603 \let\PT@end\endtabular

604 \beginpolytable}

605 {\endpolytable}

606

607 \newenvironment{parray}[1][c]%

608 {\def\PT@begin{\array[#1]}%

609 \let\PT@end\endarray

610 \beginpolytable}

611 {\endpolytable}

612

613 \def\pboxed{%

614 \let\PT@begin\@gobble

615 \let\PT@end\empty

616 \let\PT@multicolumn\PT@placeinbox

617 \expandafter\beginpolytable\ignorespaces}

618

619 \let\endpboxed\endpolytable

That is all.
620 〈/package〉

28

