Write one program, get two

(or three, or many)
BOB 2017, Berlin

Andres L6h

24 February 2017

2 Well-Typed

The Haskell Consultants

Motivation

JSON representation

class ToJSON a where
toJSON :: a —> Value
toEncoding :: a -> Encoding

class FromJSON a where
parseJSON :: Value -> Parser a

B Well-Typed

Example datatype
JSON representation

data Talk = MkTalk
{ talkNr ;0 Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

data Track = Regular | Workshop

B Well-Typed

Example datatype
JSON representation

data Talk = MkTalk
{ talkNr ;0 Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

data Track = Regular | Workshop

thisTalk =
MkTalk
12
"Andres Loh"

"Write one program, get two (or three, or many)"”
Regular

B Well-Typed

Example instances
JSON representation

data Track = Regular | Workshop

instance ToJSON Track where
toJSON Regular = "Regular”
toJSON Workshop = "Workshop”

instance FromJSON Track where

parseJSON =
withText "category” $ \txt —>
if txt == "Regular” then pure Regular

else if txt == "Workshop" then pure Workshop
else fail "unknown category”

B Well-Typed

Example instances

JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
3

B Well-Typed

Example instances

JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
3

instance ToJSON Talk where
toJSON (MkTalk nr author title cat) =

object
["nr" .= nr
, "author” = author
, "title” = title
, 'category” .= cat
]

B Well-Typed

Example instances
JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track

3
instance FromJSON Talk where
parseJSON =
withObject "talk” $ \obj —>
MkTalk

<$> obj . : "nr”
<*> obj . : "author”
<x>obj .: "title"”
<*> obj . : "category"”

B Well-Typed

Desired round-trip property
JSON representation

parseMaybe parseJSON (toJSON x) = Just x

Or:

decode (encode x) = Just x

B Well-Typed

Desired round-trip property
JSON representation

parseMaybe parseJSON (toJSON x) = Just x

Or

decode (encode x) = Just x

Example:

GHCi> decode (encode thisTalk) == Just thisTalk
True

B Well-Typed

Not just JSON

Binary serialization

class Binary t where
put :: t —> Put
get :: Get t

B Well-Typed

Example instances
Binary serialization

data Track = Regular | Workshop

B Well-Typed

Example instances
Binary serialization

data Track = Regular | Workshop

instance Binary Track where
put Regular = putWord8 0
put Workshop = putWord8 1

B Well-Typed

Example instances
Binary serialization

data Track = Regular | Workshop

instance Binary Track where
put Regular = putWord8 0
put Workshop = putWord8 1

get = do
i <- getWord8
case i of
0@ -> return Regular
1 => return Workshop
_ —> fail "out of range”

B Well-Typed

Example instances

Binary serialization

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track

}

B Well-Typed

Example instances

Binary serialization

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track

}

instance Binary Talk where
put (MkTalk nr author title cat) =
put nr >> put author >> put title >> put cat
get =
MkTalk <$> get <*> get <x*> get <x> get

B Well-Typed

Desired round-trip property

Binary serialization

runGet get (runPut (put x)) = x

Or:

decode (encode x) = x

B Well-Typed

Desired round-trip property

Binary serialization

runGet get (runPut (put x)) = x

Or

decode (encode x) = x

Example:

GHCi> decode (encode thisTalk) == thisTalk
True

B Well-Typed

Other similar examples

SQL database table rows:

class ToRow a where
toRow :: a -> [Action]

class FromRow a where
fromRow :: RowParser a

B Well-Typed

Other similar examples

SQL database table rows:

class ToRow a where
toRow :: a -> [Action]

class FromRow a where
fromRow :: RowParser a

Textual representation:

class Show a where
showsPrec :: Int -=> a —> ShowS

class Read a where
readsPrec :: Int -> ReadS a

B Well-Typed

» We write (at least) two programs.
» The programs contain the same (very similar) information.
» There are desired properties that are easily violated.

B Well-Typed

(Datatype-)Generic Programming

Derive everything automatically

deriving instance Generic Talk
deriving instance Generic Track

B Well-Typed

Derive everything automatically

deriving instance Generic Talk
deriving instance Generic Track

instance ToJSON Talk
instance ToJSON Track

instance FromJSON Talk
instance FromJSON Track

instance Binary Talk
instance Binary Track

B Well-Typed

Write no program, get many?

B Well-Typed

Write no program, get many?

» The datatype is a program!

B Well-Typed

Write no program, get many?

» The datatype is a program!
» Programs follow the structure of the datatypes precisely.
» This is not always good.

B Well-Typed

Disadvantages of generic programming

» External representations are implicit.
» And under the control of (third-party) library authors.
» Limited flexibility.

B Well-Typed

All or nothing?

Either:

>
>

>

Or:

Use the derived instances.
Enjoy the lack of boilerplate.

Possibly live with a suboptimal external (or internal)
representation.

Write instances yourself.
Stay in control.

Lots of hand-written, error-prone code with subtle proof
obligations.

B Well-Typed

Is there another option?

What if there are different requirements?

{ "nr": 12

, "author"”: "Andres Loh"

, "title"”: "Write one program, get two (or three, or many)"”
, "category"”: "Regular”

}

VS.

{ "nr": 12

, "author”: "Andres Loh"

, "title"”: "Write one program, get two (or three, or many)"”
, "is-workshop"”: false

b

B Well-Typed

The solution

A single description for both (all) desired functions:

instance Json Talk where

grammar =
fromPrism _Talk
. object
(prop "nr"
. prop "name”
. prop "title"

prop "category”

instance Json Track where
grammar =
fromPrism _Regular

. "Regular”
<> fromPrism _Workshop .

"Workshop”
B Well-Typed

A single description

» Explicit. Can be different from datatype.
» Still strongly typed.
» Easy to adapt.

B Well-Typed

Switching representations

instance Json Talk where

grammar =
fromPrism _Talk
. object
(prop "nr"
. prop "name”
. prop "title"

prop "category”

instance Json Track where
grammar =
fromPrism _Regular . "Regular”
<> fromPrism _Workshop . "Workshop”

B Well-Typed

Switching representations

instance Json Talk where

grammar =
fromPrism _Talk
. object
(prop "nr"
. prop "name”
. prop "title"
. property "is-workshop"” boolTrack
)
boolTrack =

fromPrism _Regular . false
<> fromPrism _Workshop . true

B Well-Typed

Switching representations

instance Json Talk where

grammar =
fromPrism _Talk
. object
(prop "nr"
. prop "name”
. prop "title"

. (property "is-workshop"” boolTrack
<> defaultValue Regular

)
)

boolTrack =
fromPrism _Regular . false
<> fromPrism _Workshop . true

B Well-Typed

A closer look

Prisms

» A prism generalizes a Haskell constructor.

» Combines a constructor function with a compatible
matcher.

B Well-Typed

Prisms

» A prism generalizes a Haskell constructor.

» Combines a constructor function with a compatible
matcher.

stackPrism :: (a => b) -> (b -> Maybe a)
-> StackPrism a b

forward :: StackPrism a b -> (a => b)
backward :: StackPrism a b -> (b -> Maybe a)

B Well-Typed

Prisms

» A prism generalizes a Haskell constructor.

» Combines a constructor function with a compatible
matcher.

stackPrism :: (a => b) -> (b -> Maybe a)
-> StackPrism a b

forward :: StackPrism a b -> (a => b)
backward :: StackPrism a b -> (b -> Maybe a)
Laws:

backward p (forward p a) = Just a
backward p b = Just a = forwardpa=>b

B Well-Typed

stackPrism :: (a->b) -> (b ->Maybe a) -> StackPrismab

data Talk =MkTalk
{talkNr 2 Int
, talkAuthor :: Text
,talkTitle :: Text
, talkTrack :: Track

b

B Well-Typed

stackPrism :: (a->b) -> (b ->Maybe a) -> StackPrismab

data Talk =MkTalk
{talkNr 2 Int
, talkAuthor :: Text
,talkTitle :: Text
, talkTrack :: Track

b

MkTalk :: Int -> Text —=> Text -> Track -> Talk

B Well-Typed

stackPrism :: (a->b) -> (b ->Maybe a) -> StackPrismab

data Talk =MkTalk
{talkNr 2 Int
, talkAuthor :: Text
,talkTitle :: Text
, talkTrack :: Track

b

MkTalk :: Int -=> Text -> Text —=> Track -> Talk
(Int, Text, Text, Track) -> Talk

B Well-Typed

stackPrism :: (a->b) -> (b ->Maybe a) -> StackPrismab

data Talk =MkTalk
{talkNr 2 Int
, talkAuthor :: Text
,talkTitle :: Text
, talkTrack :: Track

b

MkTalk :: Int => Text -> Text -> Track -> Talk
(Int, Text, Text, Track) -> Talk
(Int, (Text, (Text, (Track, ())))) —>Talk

B Well-Typed

stackPrism :: (a->b) -> (b ->Maybe a) -> StackPrismab

data Talk =MkTalk
{talkNr 2 Int
, talkAuthor :: Text
,talkTitle :: Text
, talkTrack :: Track

b

MkTalk :: Int => Text -> Text -> Track -> Talk
(Int, Text, Text, Track) -> Talk
(Int, (Text, (Text, (Track, s)))) ->Talk

B Well-Typed

stackPrism :: (a->b) -> (b ->Maybe a) -> StackPrismab

data Talk =MkTalk
{talkNr 2 Int
, talkAuthor :: Text
,talkTitle :: Text
, talkTrack :: Track
3

MkTalk :: Int => Text -> Text -> Track -> Talk
(Int, Text, Text, Track) -> Talk
(Int, (Text, (Text, (Track, ())))) —>Talk
(Int, (Text, (Text, (Track,s)))) —> (Talk, s)
(Int :- Text :- Text :-Track :-s) -> (Talk :-s)

2 Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

B Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

B Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

B Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

_Pair :: StackPrism (a :- b :- s) ((a, b) :- s)

B Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

_Pair :: StackPrism (a :- b :- s) ((a, b) :- s)

_Nil :: StackPrism s ([a] :- s)
_Cons :: StackPrism (a :- [a] :- s) ([a] :- s)

B Well-Typed

Obtaining stack prisms

These can be derived mechanically:

PrismList (P _Talk) =
mkPrismList :: StackPrisms Talk

PrismList (P _Regular :& P _Workshop) =
mkPrismList :: StackPrisms Track

Works via datatype-generic programming:

mkPrismList ::
(MkPrismList (Rep a), Generic a) => StackPrisms a

B Well-Typed

Another look at the descriptions

instance Json Talk where
grammar =
fromPrism _Talk
. object

(prop "nr"

. prop "name”

. prop "title"

. (property "is-workshop” boolTrack

<> defaultValue Regular

)
)

boolTrack =
fromPrism _Regular . false
<> fromPrism _Workshop . true

B Well-Typed

Grammars

Also parameterized by stacks:
Grammar n a b

Here:

» n is the syntactic category,
» a isthe “source” stack,

» b is the “target” stack.

B Well-Typed

Examples

Grammars

GHCi> :type fromPrism _Regular
fromPrism _Regular :: Grammar n a (Track :- a)

B Well-Typed

Examples

Grammars

GHCi> :type fromPrism _Regular
fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false
false :: Grammar Val (Value :- a) a

B Well-Typed

Examples

Grammars

GHCi> :type fromPrism _Regular
fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false
false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false
:: Grammar Val (Value :- b) (Track :- b)

B Well-Typed

Examples

Grammars

GHCi> :type fromPrism _Regular
fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false
false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false
:: Grammar Val (Value :- b) (Track :- b)

GHCi> gdecode (fromPrism _Regular . false) "false”
Just Regular

B Well-Typed

Examples

Grammars

GHCi> :type fromPrism _Regular
fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false
false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false
:: Grammar Val (Value :- b) (Track :- b)

GHCi> gdecode (fromPrism _Regular . false) "false”
Just Regular

GHCi> gencode (fromPrism _Regular . false) Regular
Just "false”

B Well-Typed

Combinators
Grammars

Composition:

(.) :: Grammar n b ¢ => Grammar n a b -=> Grammar n a c

B Well-Typed

Combinators
Grammars

Composition:
(.) :: Grammar n b ¢ => Grammar n a b -=> Grammar n a c

Choice:

(<>) :: Grammar n a b => Grammar n a b -> Grammar n a b

B Well-Typed

Interpretations
Grammars

class Json a where
grammar :: Grammar Val (Value :- b) (a :- b)

gencode ::
Grammar Val (Value :- ()) (a :-)
-> a —> Maybe ByteString

gdecode ::
Grammar Val (Value :- ()) (a :- O))
-> ByteString -> Maybe a

B Well-Typed

Round-trip properties?
Grammars

The expectation is that:

gencode g a = Just b =
gdecode g b = Just a

B Well-Typed

A final look at the descriptions

instance Json Talk where
grammar =
fromPrism _Talk
. object

(prop "nr"

. prop "name”

. prop "title"

. (property "is-workshop” boolTrack

<> defaultValue Regular

)
)

boolTrack =
fromPrism _Regular . false
<> fromPrism _Workshop . true

B Well-Typed

Stepping back

What have we achieved?

v

A better representation.

Sufficient to compute multiple interpretations.
Works for interpretations having different directions.
Widely applicable?

v

v

v

B Well-Typed

This and other solutions

The code shown for JSON is based on:

JsonGrammar

by Martijn van Steenbergen

B Well-Typed

This and other solutions

The code shown for JSON is based on:
JsonGrammar

by Martijn van Steenbergen

The same idea (stack prisms, composition, DSL,
interpretations) can be applied to other scenarios:

v

binary serialization,
SQL database table rows,
human-readable textual representations,

v

v

B Well-Typed

Some other notable libraries

invertible-syntax

by Tillmann Rendel (also Haskell Symposium 2010 paper)

roundtrip, roundtrip-string, roundtrip-xml, roundtrip-aeson

by Stefan Wehr and David Leuschner

(roundtrip-aeson by Thomas Sutton and Christian Marie)

boomerang, web-routes-boomerang

by Jeremy Shaw

(where web-routes-boomerang is based on Zwaluw, by Sjoerd
Visscher and (again) Martijn van Steenbergen)

B Well-Typed

Type level

servant

by Alp Mestanogullari, Sénke Hahn, Julian Arni and others

B Well-Typed

The more general message

» Choose suitable representations for your programs.

» If you write several programs that are interrelated in
complicated ways, you are doing it wrong.

» Some scenarios in specific applications may be much
easier (additional conventions and constraints).

B Well-Typed

Questions?

