
Write one program, get two
(or three, or many)
BOB 2017, Berlin

Andres Löh

24 February 2017

.

.Well-Typed

.The Haskell Consultants

Motivation

JSON representation

class ToJSON a where
toJSON :: a -> Value
toEncoding :: a -> Encoding

class FromJSON a where
parseJSON :: Value -> Parser a

.

.Well-Typed

Example datatype
JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

data Track = Regular | Workshop

thisTalk =
MkTalk
12
"Andres Löh"
"Write one program, get two (or three, or many)"
Regular

.

.Well-Typed

Example datatype
JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

data Track = Regular | Workshop

thisTalk =
MkTalk
12
"Andres Löh"
"Write one program, get two (or three, or many)"
Regular

.

.Well-Typed

Example instances
JSON representation

data Track = Regular | Workshop

instance ToJSON Track where
toJSON Regular = "Regular"
toJSON Workshop = "Workshop"

instance FromJSON Track where
parseJSON =
withText "category" $ \txt ->
if txt == "Regular" then pure Regular
else if txt == "Workshop" then pure Workshop
else fail "unknown category"

.

.Well-Typed

Example instances
JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

.

.Well-Typed

Example instances
JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

instance ToJSON Talk where
toJSON (MkTalk nr author title cat) =
object

["nr" .= nr
, "author" .= author
, "title" .= title
, "category" .= cat
]

.

.Well-Typed

Example instances
JSON representation

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

instance FromJSON Talk where
parseJSON =
withObject "talk" $ \obj ->

MkTalk
<$> obj . : "nr"
<*> obj . : "author"
<*> obj . : "title"
<*> obj . : "category"

.

.Well-Typed

Desired round-trip property
JSON representation

parseMaybe parseJSON (toJSON x) = Just x

Or:

decode (encode x) = Just x

Example:

GHCi> decode (encode thisTalk) == Just thisTalk
True

.

.Well-Typed

Desired round-trip property
JSON representation

parseMaybe parseJSON (toJSON x) = Just x

Or:

decode (encode x) = Just x

Example:

GHCi> decode (encode thisTalk) == Just thisTalk
True

.

.Well-Typed

Not just JSON

Binary serialization

class Binary t where
put :: t -> Put
get :: Get t

.

.Well-Typed

Example instances
Binary serialization

data Track = Regular | Workshop

instance Binary Track where
put Regular = putWord8 0
put Workshop = putWord8 1

get = do
i <- getWord8
case i of
0 -> return Regular
1 -> return Workshop
_ -> fail "out of range"

.

.Well-Typed

Example instances
Binary serialization

data Track = Regular | Workshop

instance Binary Track where
put Regular = putWord8 0
put Workshop = putWord8 1

get = do
i <- getWord8
case i of
0 -> return Regular
1 -> return Workshop
_ -> fail "out of range"

.

.Well-Typed

Example instances
Binary serialization

data Track = Regular | Workshop

instance Binary Track where
put Regular = putWord8 0
put Workshop = putWord8 1

get = do
i <- getWord8
case i of
0 -> return Regular
1 -> return Workshop
_ -> fail "out of range"

.

.Well-Typed

Example instances
Binary serialization

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

instance Binary Talk where
put (MkTalk nr author title cat) =
put nr >> put author >> put title >> put cat

get =
MkTalk <$> get <*> get <*> get <*> get

.

.Well-Typed

Example instances
Binary serialization

data Talk = MkTalk
{ talkNr :: Int
, talkAuthor :: Text
, talkTitle :: Text
, talkTrack :: Track
}

instance Binary Talk where
put (MkTalk nr author title cat) =
put nr >> put author >> put title >> put cat

get =
MkTalk <$> get <*> get <*> get <*> get

.

.Well-Typed

Desired round-trip property
Binary serialization

runGet get (runPut (put x)) = x

Or:

decode (encode x) = x

Example:

GHCi> decode (encode thisTalk) == thisTalk
True

.

.Well-Typed

Desired round-trip property
Binary serialization

runGet get (runPut (put x)) = x

Or:

decode (encode x) = x

Example:

GHCi> decode (encode thisTalk) == thisTalk
True

.

.Well-Typed

Other similar examples

SQL database table rows:

class ToRow a where
toRow :: a -> [Action]

class FromRow a where
fromRow :: RowParser a

Textual representation:

class Show a where
showsPrec :: Int -> a -> ShowS

class Read a where
readsPrec :: Int -> ReadS a

.

.Well-Typed

Other similar examples

SQL database table rows:

class ToRow a where
toRow :: a -> [Action]

class FromRow a where
fromRow :: RowParser a

Textual representation:

class Show a where
showsPrec :: Int -> a -> ShowS

class Read a where
readsPrec :: Int -> ReadS a

.

.Well-Typed

Common theme

I We write (at least) two programs.
I The programs contain the same (very similar) information.
I There are desired properties that are easily violated.

.

.Well-Typed

(Datatype-)Generic Programming

Derive everything automatically

deriving instance Generic Talk
deriving instance Generic Track

instance ToJSON Talk
instance ToJSON Track

instance FromJSON Talk
instance FromJSON Track

instance Binary Talk
instance Binary Track

.

.Well-Typed

Derive everything automatically

deriving instance Generic Talk
deriving instance Generic Track

instance ToJSON Talk
instance ToJSON Track

instance FromJSON Talk
instance FromJSON Track

instance Binary Talk
instance Binary Track

.

.Well-Typed

Write no program, get many?

I The datatype is a program!
I Programs follow the structure of the datatypes precisely.
I This is not always good.

.

.Well-Typed

Write no program, get many?

I The datatype is a program!

I Programs follow the structure of the datatypes precisely.
I This is not always good.

.

.Well-Typed

Write no program, get many?

I The datatype is a program!
I Programs follow the structure of the datatypes precisely.
I This is not always good.

.

.Well-Typed

Disadvantages of generic programming

I External representations are implicit.
I And under the control of (third-party) library authors.
I Limited flexibility.

.

.Well-Typed

All or nothing?

Either:

I Use the derived instances.
I Enjoy the lack of boilerplate.
I Possibly live with a suboptimal external (or internal)

representation.

Or:

I Write instances yourself.
I Stay in control.
I Lots of hand-written, error-prone code with subtle proof

obligations.

.

.Well-Typed

Is there another option?

What if there are different requirements?

{ "nr": 12
, "author": "Andres Löh"
, "title": "Write one program, get two (or three, or many)"
, "category": "Regular"
}

vs.

{ "nr": 12
, "author": "Andres Löh"
, "title": "Write one program, get two (or three, or many)"
, "is-workshop": false
}

.

.Well-Typed

The solution

A single description for both (all) desired functions:

instance Json Talk where
grammar =

fromPrism _Talk
. object

(prop "nr"
. prop "name"
. prop "title"
. prop "category"
)

instance Json Track where
grammar =

fromPrism _Regular . "Regular"
<> fromPrism _Workshop . "Workshop"

.

.Well-Typed

A single description

I Explicit. Can be different from datatype.
I Still strongly typed.
I Easy to adapt.

.

.Well-Typed

Switching representations
instance Json Talk where
grammar =

fromPrism _Talk
. object

(prop "nr"
. prop "name"
. prop "title"
. prop "category"
)

instance Json Track where
grammar =

fromPrism _Regular . "Regular"
<> fromPrism _Workshop . "Workshop"

.

.Well-Typed

Switching representations
instance Json Talk where
grammar =

fromPrism _Talk
. object

(prop "nr"
. prop "name"
. prop "title"
. property "is-workshop" boolTrack
)

boolTrack =
fromPrism _Regular . false

<> fromPrism _Workshop . true
.

.Well-Typed

Switching representations
instance Json Talk where
grammar =

fromPrism _Talk
. object

(prop "nr"
. prop "name"
. prop "title"
. (property "is-workshop" boolTrack

<> defaultValue Regular
)

)

boolTrack =
fromPrism _Regular . false

<> fromPrism _Workshop . true
.

.Well-Typed

A closer look

Prisms

I A prism generalizes a Haskell constructor.
I Combines a constructor function with a compatible

matcher.

stackPrism :: (a -> b) -> (b -> Maybe a)
-> StackPrism a b

forward :: StackPrism a b -> (a -> b)
backward :: StackPrism a b -> (b -> Maybe a)

Laws:

backward p (forward p a) = Just a

backward p b = Just a ⇒ forward p a = b

.

.Well-Typed

Prisms

I A prism generalizes a Haskell constructor.
I Combines a constructor function with a compatible

matcher.

stackPrism :: (a -> b) -> (b -> Maybe a)
-> StackPrism a b

forward :: StackPrism a b -> (a -> b)
backward :: StackPrism a b -> (b -> Maybe a)

Laws:

backward p (forward p a) = Just a

backward p b = Just a ⇒ forward p a = b

.

.Well-Typed

Prisms

I A prism generalizes a Haskell constructor.
I Combines a constructor function with a compatible

matcher.

stackPrism :: (a -> b) -> (b -> Maybe a)
-> StackPrism a b

forward :: StackPrism a b -> (a -> b)
backward :: StackPrism a b -> (b -> Maybe a)

Laws:

backward p (forward p a) = Just a

backward p b = Just a ⇒ forward p a = b

.

.Well-Typed

Stacks

stackPrism :: (a -> b) -> (b -> Maybe a) -> StackPrism a b

data Talk = MkTalk
{talkNr :: Int
,talkAuthor :: Text
,talkTitle :: Text
,talkTrack :: Track
}

.

.Well-Typed

Stacks

stackPrism :: (a -> b) -> (b -> Maybe a) -> StackPrism a b

data Talk = MkTalk
{talkNr :: Int
,talkAuthor :: Text
,talkTitle :: Text
,talkTrack :: Track
}

MkTalk :: Int -> Text -> Text -> Track -> Talk

.

.Well-Typed

Stacks

stackPrism :: (a -> b) -> (b -> Maybe a) -> StackPrism a b

data Talk = MkTalk
{talkNr :: Int
,talkAuthor :: Text
,talkTitle :: Text
,talkTrack :: Track
}

MkTalk :: Int -> Text -> Text -> Track -> Talk

(Int,Text,Text,Track) -> Talk

.

.Well-Typed

Stacks

stackPrism :: (a -> b) -> (b -> Maybe a) -> StackPrism a b

data Talk = MkTalk
{talkNr :: Int
,talkAuthor :: Text
,talkTitle :: Text
,talkTrack :: Track
}

MkTalk :: Int -> Text -> Text -> Track -> Talk

(Int,Text,Text,Track) -> Talk

(Int,(Text,(Text,(Track,())))) -> Talk

.

.Well-Typed

Stacks

stackPrism :: (a -> b) -> (b -> Maybe a) -> StackPrism a b

data Talk = MkTalk
{talkNr :: Int
,talkAuthor :: Text
,talkTitle :: Text
,talkTrack :: Track
}

MkTalk :: Int -> Text -> Text -> Track -> Talk

(Int,Text,Text,Track) -> Talk

(Int,(Text,(Text,(Track,s)))) -> Talk

.

.Well-Typed

Stacks

stackPrism :: (a -> b) -> (b -> Maybe a) -> StackPrism a b

data Talk = MkTalk
{talkNr :: Int
,talkAuthor :: Text
,talkTitle :: Text
,talkTrack :: Track
}

MkTalk :: Int -> Text -> Text -> Track -> Talk

(Int,Text,Text,Track) -> Talk

(Int,(Text,(Text,(Track,())))) -> Talk

(Int,(Text,(Text,(Track,s)))) -> (Talk,s)

(Int :- Text :- Text :- Track :- s) -> (Talk :- s)

.

.Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

_Pair :: StackPrism (a :- b :- s) ((a, b) :- s)

_Nil :: StackPrism s ([a] :- s)
_Cons :: StackPrism (a :- [a] :- s) ([a] :- s)

.

.Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

_Pair :: StackPrism (a :- b :- s) ((a, b) :- s)

_Nil :: StackPrism s ([a] :- s)
_Cons :: StackPrism (a :- [a] :- s) ([a] :- s)

.

.Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

_Pair :: StackPrism (a :- b :- s) ((a, b) :- s)

_Nil :: StackPrism s ([a] :- s)
_Cons :: StackPrism (a :- [a] :- s) ([a] :- s)

.

.Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

_Pair :: StackPrism (a :- b :- s) ((a, b) :- s)

_Nil :: StackPrism s ([a] :- s)
_Cons :: StackPrism (a :- [a] :- s) ([a] :- s)

.

.Well-Typed

Example stack prisms

_Talk ::
StackPrism
(Int :- Text :- Text :- Track :- s) (Track :- s)

_False :: StackPrism s (Bool :- s)
_True :: StackPrism s (Bool :- s)

_Nothing :: StackPrism s (Maybe a :- s)
_Just :: StackPrism (a :- s) (Maybe a :- s)

_Pair :: StackPrism (a :- b :- s) ((a, b) :- s)

_Nil :: StackPrism s ([a] :- s)
_Cons :: StackPrism (a :- [a] :- s) ([a] :- s)

.

.Well-Typed

Obtaining stack prisms

These can be derived mechanically:

PrismList (P _Talk) =
mkPrismList :: StackPrisms Talk

PrismList (P _Regular :& P _Workshop) =
mkPrismList :: StackPrisms Track

Works via datatype-generic programming:

mkPrismList ::
(MkPrismList (Rep a), Generic a) => StackPrisms a

.

.Well-Typed

Another look at the descriptions

instance Json Talk where
grammar =

fromPrism _Talk
. object

(prop "nr"
. prop "name"
. prop "title"
. (property "is-workshop" boolTrack

<> defaultValue Regular
)

)

boolTrack =
fromPrism _Regular . false

<> fromPrism _Workshop . true

.

.Well-Typed

Grammars

Also parameterized by stacks:

Grammar n a b

Here:

I n is the syntactic category,
I a is the “source” stack,
I b is the “target” stack.

.

.Well-Typed

Examples
Grammars

GHCi> :type fromPrism _Regular

fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false

false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false

... :: Grammar Val (Value :- b) (Track :- b)

GHCi> gdecode (fromPrism _Regular . false) "false"

Just Regular

GHCi> gencode (fromPrism _Regular . false) Regular

Just "false"

.

.Well-Typed

Examples
Grammars

GHCi> :type fromPrism _Regular

fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false

false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false

... :: Grammar Val (Value :- b) (Track :- b)

GHCi> gdecode (fromPrism _Regular . false) "false"

Just Regular

GHCi> gencode (fromPrism _Regular . false) Regular

Just "false"

.

.Well-Typed

Examples
Grammars

GHCi> :type fromPrism _Regular

fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false

false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false

... :: Grammar Val (Value :- b) (Track :- b)

GHCi> gdecode (fromPrism _Regular . false) "false"

Just Regular

GHCi> gencode (fromPrism _Regular . false) Regular

Just "false"

.

.Well-Typed

Examples
Grammars

GHCi> :type fromPrism _Regular

fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false

false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false

... :: Grammar Val (Value :- b) (Track :- b)

GHCi> gdecode (fromPrism _Regular . false) "false"

Just Regular

GHCi> gencode (fromPrism _Regular . false) Regular

Just "false"

.

.Well-Typed

Examples
Grammars

GHCi> :type fromPrism _Regular

fromPrism _Regular :: Grammar n a (Track :- a)

GHCi> :type false

false :: Grammar Val (Value :- a) a

GHCi> :type fromPrism _Regular . false

... :: Grammar Val (Value :- b) (Track :- b)

GHCi> gdecode (fromPrism _Regular . false) "false"

Just Regular

GHCi> gencode (fromPrism _Regular . false) Regular

Just "false"

.

.Well-Typed

Combinators
Grammars

Composition:

(.) :: Grammar n b c -> Grammar n a b -> Grammar n a c

Choice:

(<>) :: Grammar n a b -> Grammar n a b -> Grammar n a b

.

.Well-Typed

Combinators
Grammars

Composition:

(.) :: Grammar n b c -> Grammar n a b -> Grammar n a c

Choice:

(<>) :: Grammar n a b -> Grammar n a b -> Grammar n a b

.

.Well-Typed

Interpretations
Grammars

class Json a where
grammar :: Grammar Val (Value :- b) (a :- b)

gencode ::
Grammar Val (Value :- ()) (a :- ())

-> a -> Maybe ByteString

gdecode ::
Grammar Val (Value :- ()) (a :- ())

-> ByteString -> Maybe a

.

.Well-Typed

Round-trip properties?
Grammars

The expectation is that:

gencode g a = Just b ⇒
gdecode g b = Just a

.

.Well-Typed

A final look at the descriptions

instance Json Talk where
grammar =

fromPrism _Talk
. object

(prop "nr"
. prop "name"
. prop "title"
. (property "is-workshop" boolTrack

<> defaultValue Regular
)

)

boolTrack =
fromPrism _Regular . false

<> fromPrism _Workshop . true

.

.Well-Typed

Stepping back

What have we achieved?

I A better representation.
I Sufficient to compute multiple interpretations.
I Works for interpretations having different directions.
I Widely applicable?

.

.Well-Typed

This and other solutions

The code shown for JSON is based on:

JsonGrammar

by Martijn van Steenbergen

The same idea (stack prisms, composition, DSL,
interpretations) can be applied to other scenarios:

I binary serialization,
I SQL database table rows,
I human-readable textual representations,
I . . .

.

.Well-Typed

This and other solutions

The code shown for JSON is based on:

JsonGrammar

by Martijn van Steenbergen

The same idea (stack prisms, composition, DSL,
interpretations) can be applied to other scenarios:

I binary serialization,
I SQL database table rows,
I human-readable textual representations,
I . . .

.

.Well-Typed

Some other notable libraries

invertible-syntax

by Tillmann Rendel (also Haskell Symposium 2010 paper)

roundtrip, roundtrip-string, roundtrip-xml, roundtrip-aeson

by Stefan Wehr and David Leuschner

(roundtrip-aeson by Thomas Sutton and Christian Marie)

boomerang, web-routes-boomerang

by Jeremy Shaw

(where web-routes-boomerang is based on Zwaluw, by Sjoerd
Visscher and (again) Martijn van Steenbergen)

.

.Well-Typed

Type level

servant

by Alp Mestanogullari, Sönke Hahn, Julian Arni and others

.

.Well-Typed

The more general message

I Choose suitable representations for your programs.
I If you write several programs that are interrelated in

complicated ways, you are doing it wrong.
I Some scenarios in specific applications may be much

easier (additional conventions and constraints).

.

.Well-Typed

Questions?

