
Fundamenta Informaticae XXI (2001) 1001–1032 1001

IOS Press

A tutorial implementation
of a dependently typed lambda calculus

Andres Löh
Utrecht University
andres@cs.uu.nl

Conor McBride
University of Strathclyde
conor.mcbride@cis.strath.ac.uk

Wouter Swierstra
University of Nottingham
wss@cs.nott.ac.uk

Abstract. We present the type rules for a dependently typed core calculus together with a straight-
forward implementation in Haskell. We explicitly highlight the changes necessary to shift from a
simply-typed lambda calculus to the dependently typed lambda calculus. We also describe how to
extend our core language with data types and write several small example programs. The article is
accompanied by an executable interpreter and example code that allows immediate experimentation
with the system we describe.

1. Introduction

Most functional programmers are hesitant to program with dependent types. It is said that type checking
becomes undecidable; the type checker will always loop; and that dependent types are just really, really,
hard.

The same programmers, however, are perfectly happy to program with a ghastly hodgepodge of
complex type system extensions. Current Haskell implementations, for instance, support generalized al-
gebraic data types, multi-parameter type classes with functional dependencies, associated types and type
families, impredicative higher-ranked types, and there are even more extensions on the way. Program-
mers seem to be willing to go to great lengths just to avoid dependent types.

One of the major barriers preventing the further proliferation of dependent types is a lack of under-
standing amongst the general functional programming community. While, by now, there are quite a few
good experimental tools and programming languages based on dependent types, it is hard to grasp how

1002 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

these tools actually work. A significant part of the literature available on dependent types is written by
type theorists for other type theorists to read. As a result, these papers are often not easily accessible
to functional programmers. This article aims to remedy this situation by making the following novel
contributions:

• Most importantly, we aim to fill the just described gap in the literature. To set the scene, we study
the simply-typed lambda calculus (Section 2). We present both the mathematical specification and
Haskell implementation of the abstract syntax, evaluation, and type checking. Taking the simply-
typed lambda calculus as starting point, we move on to a minimal dependently typed lambda
calculus (Section 3).

Inspired by Pierce’s incremental development of type systems [19], we highlight the changes, both
in the specification and implementation, that are necessary to shift to the dependently typed lambda
calculus. Perhaps surprisingly, the modifications necessary are comparatively small. By making
these changes as explicit as possible, we hope that the transition to dependent types will be as
smooth as possible for readers already familiar with the simply-typed lambda calculus.

While none of the type systems we implement are new, we believe that our article can serve as a
gentle introduction on how to implement a dependently typed system in Haskell. Implementing
a type system is one of the best ways to learn about all the subtle issues involved. Although we
do not aim to survey all the different ways to implement a typed lambda calculus, we do try to be
explicit about our design decisions, carefully mention alternative choices, and provide an outline
of the wider design space.

The full power of dependent types can only come to its own if we add data types to this base
calculus. Therefore we demonstrate how to extend our language with natural numbers and vectors
in Section 4. More data types can be added using the principles explained in this section. Using
the added data types, we write the classic vector append operation to illustrate how to program in
our core calculus.

• We briefly sketch how a programming language may be built on top of the core calculus (Sec-
tion 5), which itself has the nature of an internal language: it is explicitly typed; it requires a lot of
code that one would like to omit in real programs; it lacks a lot of syntactic sugar.

We feel that being so explicit does have merits: writing simple programs in the core calculus can be
very instructive and reveals a great deal about the behaviour of dependently typed systems. Learn-
ing this core language can help understand the subtle differences between existing dependently
typed systems. Writing larger programs directly in this calculus, however, is a pain. We therefore
sketch some of the language concepts that are required to go from the core language toward a full
programming language.

• Finally, we have made it easy to experiment with our system: the source code of this article
contains a small interpreter for the type system and evaluation rules we describe. By using the
same sources as the article, the interpreter is guaranteed to follow the implementation we describe
closely, and is carefully documented. It hence provides a valuable platform for further education
and experimentation.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1003

This article is not an introduction to dependently typed programming or an explanation on how to
implement a full dependently typed programming language. However, we hope that this article will help
to dispel many misconceptions functional programmers may have about dependent types, and that it will
encourage readers to explore this exciting area of research further.

2. Simply Typed Lambda Calculus

On our journey to dependent types, we want to start on familiar ground. In this section, we therefore
consider the simply-typed lambda calculus, or λ→ for short. In a sense, λ→ is the smallest imaginable
statically typed functional language. Every term is explicitly typed and no type inference is performed. It
has a much simpler structure than the type lambda calculi at the basis of languages such as ML or Haskell
that support polymorphic types and type constructors. In λ→, there are only base types and functions
cannot be polymorphic. Without further additions, λ→ is strongly normalizing: evaluation terminates for
any term, independent of the evaluation strategy.

2.1. Abstract syntax

The type language of λ→ consists of just two constructs:

τ ::= α base type
| τ → τ ′ function type

There is a set of base types α; compound types τ → τ ′ correspond to functions from τ to τ ′.

e ::= e :: τ annotated term1

| x variable
| e e′ application
| λx→ e lambda abstraction

There are four kinds of terms: terms with an explicit type annotation; variables; applications; and lambda
abstractions.

Terms can be evaluated to values:

v ::= n neutral term
| λx→ v lambda abstraction

n ::= x variable
| n v application

A value is either a neutral term, i.e., a variable applied to a (possibly empty) sequence of values, or it is
a lambda abstraction.

1Type theorists use ‘:’ or ‘∈’ to denote the type inhabitation relation. In Haskell, the symbol ‘:’ is used as the “cons” operator
for lists, therefore the designers of Haskell chose the non-standard ‘::’ for type annotations. In this article, we will stick as close
as possible to Haskell’s syntax, in order to reduce the syntactic gap between the languages involved in the presentation.

1004 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

e ⇓ v
e :: τ ⇓ v x ⇓ x

e ⇓ λx→ v e′ ⇓ v′

e e′ ⇓ v[x 7→ v′]
e ⇓ n e′ ⇓ v′

e e′ ⇓ n v′
e ⇓ v

λx→ e ⇓ λx→ v

Figure 1. Evaluation in λ→

2.2. Evaluation

The (big-step) evaluation rules of λ→ are given in Figure 1. The notation e ⇓ v means that the result of
completely evaluating e is v. Since we are in a strongly normalizing language, the evaluation strategy is
irrelevant. To keep the presentation simple, we evaluate everything as far as possible, and even evaluate
under lambda. Type annotations are ignored during evaluation. Variables evaluate to themselves. The
only interesting case is application. In that case, it depends whether the left hand side evaluates to a
lambda abstraction or to a neutral term. In the former case, we β-reduce. In the latter case, we add the
additional argument to the spine.

Here are few example terms in λ→, and their evaluations. Let us write id to denote the term λx→ x,
and const to denote the term λx y→ x, which we use in turn as syntactic sugar for λx→ λy→ x. Then

(id :: α→ α) y ⇓ y

(const :: (β → β)→ α→ β → β) id y ⇓ id

2.3. Type System

Type rules are generally of the form 0 ` e::t, indicating that a term e is of type t in context 0. The context
lists valid base types, and associates identifiers with type information. We write α ::∗ to indicate that α is
a base type, and x :: t to indicate that x is a term of type t. Every free variable in both terms and types must
occur in the context. For instance, if we want to declare const to be of type (β → β)→ α → β → β,
we need our context to contain at least:

α :: ∗, β :: ∗, const :: (β → β)→ α→ β → β

Note α and β are introduced before they are used in the type of const. These considerations motivate the
definitions of contexts and their validity given in Figure 2.

Multiple bindings for the same variable can occur in a context, with the rightmost binding taking
precedence. We write 0(z) to denote the information associated with identifier z by context 0.

The last two rules in Figure 2 (TVAR, FUN) explain when a type is well-formed, i.e., when all its free
variables appear in the context. In the rules for the well-formedness of types as well as in the type rules
that follow, we implicitly assume that all contexts are valid.

Note that λ→ is not polymorphic: a type identifier represents one specific type and cannot be instan-
tiated.

Finally, we can give the type rules (Figure 3). We do not try to infer the types of lambda-bound vari-
ables. Therefore, in general, we perform only type checking. However, for annotated terms, variables,

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1005

0 ::= ε empty context
| 0, α :: ∗ adding a type identifier
| 0, x :: τ adding a term identifier

valid(ε)

valid(0)

valid(0, α :: ∗)
valid(0) 0 ` τ :: ∗

valid(0, x :: τ)

0(α) = ∗

0 ` α :: ∗
(TVAR)

0 ` τ :: ∗ 0 ` τ ′ :: ∗
0 ` τ → τ ′ :: ∗

(FUN)

Figure 2. Contexts and well-formed types in λ→

0 ` τ :: ∗ 0 ` e ::↓ τ

0 ` (e :: τ) ::↑ τ
(ANN)

0(x) = τ

0 ` x ::↑ τ
(VAR)

0 ` e ::↑ τ → τ ′ 0 ` e′ ::↓ τ

0 ` e e′ ::↑ τ ′
(APP)

0 ` e ::↑ τ

0 ` e ::↓ τ
(INF)

0, x :: τ ` e ::↓ τ ′

0 ` λx→ e ::↓ τ → τ ′
(LAM)

Figure 3. Type rules for λ→

and applications we can easily determine the type. We therefore mark type rules with ::↓ when the type
is supposed to be an input and with ::↑ when the type is an output. For now, this is only to provide an
intuition, but the distinction will become more significant in the implementation.

Let us first look at the inferable terms. We check annotated terms against their type annotation, and
then return the type (ANN). The type of a variable can be looked up in the environment (VAR). For
applications (APP), we deal with the function first, which must be of a function type. We can then check
the argument against the function’s domain, and return the range as the result type.

The final two rules are for type checking. If we can infer a type for a term, we can also check it
against a type if the two types are identical (INF). A lambda abstraction (LAM) can only be checked
against a function type. We check the body of the abstraction in an extended context.

Note that the rules are almost syntax-directed: The rule relating checkable and inferable terms (INF)
seems to match any term. However, since there is no rule to infer the type of a lambda abstraction and
there are no explicit rules to check an annotation, variable or application, the rules can easily be translated
into a syntax-directed algorithm.

Here are type judgements – derivable using the above rules – for our two running examples:

α :: ∗, y :: α ` (id :: α→α) y :: α

α :: ∗, y :: α, β :: ∗ ` (const :: (β→β)→α→β→β) id y :: β→β

1006 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

2.4. Implementation

We now give an implementation of λ→ in Haskell. We provide an evaluator for well-typed expressions,
and functions to type-check λ→ terms. The implementation follows the formal description that we have
just introduced very closely.

There is a certain freedom in how to implement the rules. We pick an implementation that allows
us to follow the type system closely, and that reduces the amount of technical overhead to a relative
minimum, so that we can concentrate on the essence of the algorithms involved. In what follows, we
briefly discuss our design decisions and mention alternatives. It is important to point out that none of
these decisions is essential for implementing dependent types.

Representing bound variables There are different possibilities to represent bound variables – all of
them have advantages, and in order to exploit a maximum of advantages, we choose different represen-
tations in different places of our implementation.

We represent locally bound variables by de Bruijn indices: variable occurrences are represented by
numbers instead of strings or letters, the number indicating how many binders occur between its binder
and the occurrence. For example, we can write id as λ → 0, and const as λ → λ → 1 using de Bruijn
indices. The advantage of this representation is that variables never have to be renamed, i.e., α-equality
of terms reduces to syntactic equality of terms.

The disadvantage of using de Bruijn indices is that they cannot be used to represent terms with free
variables, and whenever we encounter a lambda while type checking, we have to check the body of
the expression which then has free variables. We therefore represent such free variables in terms using
strings. The combination of using numbers for variables local, and strings for variables global to the
current term is called a locally nameless representation [12].

Finally, we use higher-order abstract syntax to represent values: values that are functions are rep-
resented using Haskell functions. This has the advantage that we can use Haskell’s function application
and do not have to implement substitution ourselves, and need not worry about name capture. A slight
downside of this approach is that Haskell functions can neither be shown nor compared for equality. For-
tunately, this drawback can easily be alleviated by quoting a value back into a concrete representation.
We will return to quoting once we have defined the evaluator and the type checker.

Separating inferable and checkable terms As we have already hinted at in the presentation of the
type rules for λ→ in Figure 3, we choose to distinguish terms for which the type can be read off (called
inferable terms) and terms for which we need a type to check them.

This distinction has the advantage that we can give precise and total definitions of all the functions
involved in the type checker and evaluator. Another possibility is to require every lambda-abstracted
variable to be explicitly annotated in the abstract syntax – we would then have inferable terms exclusively.
It is, however, very useful to be able to annotate any term. In the presence of general annotations, it is no
longer necessary to require an annotation on every lambda-bound variable. In fact, allowing un-annotated
lambdas gives us quite a bit of convenience without extra cost: applications of the form e (λx→ e′) can
be processed without type annotation, because the type of x is determined by the type of e.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1007

Abstract syntax We introduce data types for inferable (Term↑) and checkable (Term↓) terms, and for
names.

data Term↑
= Ann Term↓ Type
| Bound Int
| Free Name
| Term↑ :@: Term↓

deriving (Show, Eq)

data Term↓
= Inf Term↑
| Lam Term↓

deriving (Show, Eq)

data Name
= Global String
| Local Int
| Quote Int

deriving (Show, Eq)

Annotated terms are represented using Ann. As explained above, we use integers to represent bound vari-
ables (Bound), and names for free variables (Free). Names usually refer to global entities using strings.
When passing a binder in an algorithm, we have to convert a bound variable into a free variable temporar-
ily, and use Local for that. During quoting, we will use the Quote constructor. The infix constructor :@:
denotes application.

Inferable terms are embedded in the checkable terms via the constructor Inf , and lambda abstractions
(which do not introduce an explicit variable due to our use of de Bruijn indices) are written using Lam.

Types consist only of type identifiers (TFree) or function arrows (Fun). We reuse the Name data type
for type identifiers. In λ→, there are no bound names on the type level, so there is no need for a TBound
constructor.

data Type
= TFree Name
| Fun Type Type

deriving (Show, Eq)

Values are lambda abstractions (VLam) or neutral terms (VNeutral).

data Value
= VLam (Value→ Value)

| VNeutral Neutral

As described in the discussion on higher-order abstract syntax, we represent function values as Haskell
functions of type Value → Value. For instance, the term const – when evaluated – results in the value
VLam (λx→ VLam (λy→ x)).

The data type for neutral terms matches the formal abstract syntax exactly. A neutral term is either a
variable (NFree), or an application of a neutral term to a value (NApp).

1008 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

data Neutral
= NFree Name
| NApp Neutral Value

We introduce a function vfree that creates the value corresponding to a free variable:

vfree :: Name→ Value
vfree n = VNeutral (NFree n)

Evaluation The code for evaluation is given in Figure 4. The functions eval↑ and eval↓ implement the
big-step evaluation rules for inferable and checkable terms respectively. Comparing the code to the rules
in Figure 1 reveals that the implementation is mostly straightforward.

Substitution is handled by passing around an environment of values. Since bound variables are
represented as integers, the environment is just a list of values where the i-th position corresponds to the
value of variable i. We add a new element to the environment whenever evaluating underneath a binder,
and lookup the correct element (using Haskell’s list lookup operator (!!)) when we encounter a bound
variable.

For lambda functions (Lam), we introduce a Haskell function and add the bound variable x to the
environment while evaluating the body.

Contexts Before we can tackle the implementation of type checking, we have to define contexts. Con-
texts are implemented as (reversed) lists associating names with either ∗ (HasKind Star) or a type
(HasType t):

data Kind = Star
deriving (Show)

data Info
= HasKind Kind
| HasType Type

deriving (Show)

type Context = [(Name, Info)]

Extending a context is thus achieved by the list “cons” operation; looking up a name in a context is
performed by the Haskell standard list function lookup.

Type checking We now implement the rules in Figure 3. The code is shown in Figure 5. The type
checking algorithm can fail, and to do so gracefully, it returns a result in the Result monad. For simplicity,
we choose a standard error monad in this presentation:

type Result α = Either String α

We use the function throwError :: String→ Result α to report an error.
The function for inferable terms type↑ returns a type, whereas the function for checkable terms type↓

takes a type as input and returns (). The well-formedness of types is checked using the function kind↓.
Each case of the definitions corresponds directly to one of the rules.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1009

type Env = [Value]
eval↑ :: Term↑→ Env→ Value
eval↑ (Ann e) d = eval↓ e d
eval↑ (Free x) d = vfree x
eval↑ (Bound i) d = d !! i
eval↑ (e :@: e′) d = vapp (eval↑ e d) (eval↓ e′ d)

vapp :: Value→ Value→ Value
vapp (VLam f) v = f v
vapp (VNeutral n) v = VNeutral (NApp n v)

eval↓ :: Term↓→ Env→ Value
eval↓ (Inf i) d = eval↑ i d
eval↓ (Lam e) d = VLam (λx→ eval↓ e (x : d))

Figure 4. Implementation of an evaluator for λ→

The type-checking functions are parameterized by an integer argument indicating the number of
binders we have encountered. On the initial call, this argument is 0, therefore we provide type↑0 as a
wrapper function.

We use this integer to simulate the type rules in the handling of bound variables. In the type rule for
lambda abstraction (LAM), we add the bound variable to the context while checking the body. We do the
same in the implementation. The counter i indicates the number of binders we have passed, so Local i
is a fresh name that we can associate with the bound variable. We then add Local i to the context 0

when checking the body. However, because we are turning a bound variable into a free variable, we have
to perform the corresponding substitution on the body. The type checker will never encounter a bound
variable; correspondingly the function type↑ has no case for Bound.

Note that the type equality check that is performed when checking an inferable term is implemented
by a straightforward syntactic equality on the data type Type. Our type checker does not perform unifi-
cation.

The code for substitution is shown in Figure 6, and again comprises a function for checkable (subst↓)
and one for inferable terms (subst↑). The integer argument indicates which variable is to be substituted.
The interesting cases are the one for Bound where we check if the variable encountered is the one to be
substituted or not, and the case for Lam, where we increase i to reflect that the variable to substitute is
referenced by a higher number underneath the binder.

Our implementation of the simply-typed lambda calculus is now almost complete. A small problem
that remains is the evaluator returns a Value, and we currently have no way to print elements of type Value.

Quotation As we mentioned earlier, the use of higher-order abstract syntax requires us to define a
quote function that takes a Value back to a term. As the VLam constructor of the Value data type takes
a function as argument, we cannot simply derive Show and Eq as we did for the other types. Therefore,
as soon as we want to get back at the internal structure of a value, for instance to display results of
evaluation, we need the function quote. The code is given in Figure 7.

1010 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

kind↓ :: Context→ Type→ Kind→ Result ()

kind↓ 0 (TFree x) Star
= case lookup x 0 of

Just (HasKind Star)→ return ()

Nothing → throwError "unknown identifier"
kind↓ 0 (Fun κ κ ′) Star
= do kind↓ 0 κ Star

kind↓ 0 κ ′ Star

type↑0 :: Context→ Term↑→ Result Type
type↑0 = type↑ 0
type↑ :: Int→ Context→ Term↑→ Result Type
type↑ i 0 (Ann e τ)

= do kind↓ 0 τ Star
type↓ i 0 e τ

return τ

type↑ i 0 (Free x)
= case lookup x 0 of

Just (HasType τ)→ return τ

Nothing → throwError "unknown identifier"
type↑ i 0 (e :@: e′)
= do σ ← type↑ i 0 e

case σ of
Fun τ τ ′→ do type↓ i 0 e′ τ

return τ ′

→ throwError "illegal application"

type↓ :: Int→ Context→ Term↓→ Type→ Result ()

type↓ i 0 (Inf e) τ

= do τ ′← type↑ i 0 e
unless (τ = = τ ′) (throwError "type mismatch")

type↓ i 0 (Lam e) (Fun τ τ ′)

= type↓ (i+ 1) ((Local i, HasType τ) : 0)

(subst↓ 0 (Free (Local i)) e) τ ′

type↓ i 0

= throwError "type mismatch"

Figure 5. Implementation of a type checker for λ→

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1011

subst↑ :: Int→ Term↑→ Term↑→ Term↑
subst↑ i r (Ann e τ) = Ann (subst↓ i r e) τ

subst↑ i r (Bound j) = if i = = j then r else Bound j
subst↑ i r (Free y) = Free y
subst↑ i r (e :@: e′) = subst↑ i r e :@: subst↓ i r e′

subst↓ :: Int→ Term↑→ Term↓→ Term↓
subst↓ i r (Inf e) = Inf (subst↑ i r e)
subst↓ i r (Lam e) = Lam (subst↓ (i+ 1) r e)

Figure 6. Implementation of substitution for λ→

quote0 :: Value→ Term↓
quote0 = quote 0
quote :: Int→ Value→ Term↓
quote i (VLam f) = Lam (quote (i+ 1) (f (vfree (Quote i))))
quote i (VNeutral n) = Inf (neutralQuote i n)

neutralQuote :: Int→ Neutral→ Term↑
neutralQuote i (NFree x) = boundfree i x
neutralQuote i (NApp n v) = neutralQuote i n :@: quote i v

Figure 7. Quotation in λ→

1012 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

The function quote takes an integer argument that counts the number of binders we have traversed.
Initially, quote is always called with 0, so we wrap this call in the function quote0.

If the value is a lambda abstraction, we generate a fresh variable Quote i and apply the Haskell
function f to this fresh variable. The value resulting from the function application is then quoted at
level i+ 1. We use the constructor Quote that takes an argument of type Int here to ensure that the newly
created names do not clash with other names in the value.

If the value is a neutral term (hence an application of a free variable to other values), the function
neutralQuote is used to quote the arguments. The boundfree function checks if the variable occurring at
the head of the application is a Quote and thus a bound variable, or a free name:

boundfree :: Int→ Name→ Term↑
boundfree i (Quote k) = Bound (i− k − 1)

boundfree i x = Free x

Quotation of functions is best understood by example. The value corresponding to the term const is
VLam (λx→ VLam (λy→ x)). Applying quote0 yields the following:

quote 0 (VLam (λx→ VLam (λy→ x)))
= Lam (quote 1 (VLam (λy→ vfree (Quote 0))))

= Lam (Lam (quote 2 (vfree (Quote 0))))

= Lam (Lam (neutralQuote 2 (NFree (Quote 0))))

= Lam (Lam (Bound 1))

When quote moves underneath a binder, we introduce a temporary name for the bound variable. To
ensure that names invented during quotation do not interfere with any other names, we only use the
constructor Quote during the quotation process. If the bound variable actually occurs in the body of
the function, we will sooner or later arrive at those occurrences. We can then generate the correct de
Bruijn index by determining the number of binders we have passed between introducing and observing
the Quote variable.

Examples We can now test the implementation on our running examples. We make the following
definitions

id′ = Lam (Inf (Bound 0))

const′ = Lam (Lam (Inf (Bound 1)))

tfree α = TFree (Global α)

free x = Inf (Free (Global x))

term1 = Ann id′ (Fun (tfree "a") (tfree "a")) :@: free "y"
term2 = Ann const′ (Fun (Fun (tfree "b") (tfree "b"))

(Fun (tfree "a")
(Fun (tfree "b") (tfree "b"))))

:@: id′ :@: free "y"

env1 = [(Global "y", HasType (tfree "a")),
(Global "a", HasKind Star)]

env2 = [(Global "b", HasKind Star)]++ env1

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1013

and then run an interactive session in Hugs or GHCi:2

〉 quote0 (eval↑ term1 [])
Inf (Free (Global "y"))

〉 quote0 (eval↑ term2 [])
Lam (Inf (Bound 0))

〉 type↑0 env1 term1

Right (TFree (Global "a"))

〉 type↑0 env2 term2

Right (Fun (TFree (Global "b")) (TFree (Global "b")))

We have implemented a parser, pretty-printer and a small read-eval-print loop,3 so that the above inter-
action can more conveniently take place as:

〉〉 assume (α :: ∗) (y :: α)

〉〉 ((λx→ x) :: α→ α) y
y :: α

〉〉 assume β :: ∗
〉〉 ((λx y→ x) :: (β → β)→ α→ β → β) (λx→ x) y
λx→ x :: β → β

With assume, names are introduced and added to the context. For each term, the interpreter performs
type checking and evaluation, and shows the final value and the type.

3. Dependent types

In this section, we will modify the type system of the simply-typed lambda calculus into a dependently
typed lambda calculus, called λ5. In the beginning of this section, we discuss the two core ideas of the
upcoming changes. We then repeat the formal definitions of abstract syntax, evaluation and type rules,
and highlight the changes with respect to the simply-typed case. We conclude this section by discussing
how to adapt the implementation.

Dependent function space In languages such as Haskell we can define polymorphic functions, such
as the identity function:

id :: ∀α.α→ α

id = λx→ x

By using polymorphism, we can avoid writing the same function on, say, integers and booleans. Poly-
morphism can be made explicit by interpreting it as a type abstraction. The identity function then takes

2Using lhs2TEX [5], one can generate a valid Haskell program from the sources of this article. The results given here automat-
ically generated by invoking GHCi whenever this article is typeset.
3The code is included in the article sources, but omitted from the typeset version for brevity.

1014 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

two arguments: a type α and a value of α. Calls to the new identity function must explicitly instantiate
the identity function with a type:

id :: ∀α.α→ α

id = λ(α :: ∗) (x :: α)→ x

id Bool True :: Bool
id Int 3 :: Int

Polymorphism thus allows types to abstract over types. Why would you want to do anything different?
Consider the following data types:

data Vec0 α = Vec0
data Vec1 α = Vec1 α

data Vec2 α = Vec2 α α

data Vec3 α = Vec3 α α α

Clearly, there is a pattern here. We would like to have a single family of types, indexed by the number
of elements,

∀α :: ∗.∀n :: Nat.Vec α n

but we cannot easily do this in Haskell. The problem is that the type Vec abstracts over the value n.
The dependent function space ‘∀’ generalizes the usual function space ‘→’ by allowing the range

to depend on the domain. The parametric polymorphism known from Haskell can be seen as a special
case of a dependent function, motivating our use of the symbol ‘∀’.4 In contrast to polymorphism, the
dependent function space can abstract over more than just types. The Vec type above is a valid dependent
type.

It is important to note that the dependent function space is a generalization of the usual function
space. We can, for instance, type the identity function on vectors as follows:

∀α :: ∗.∀n :: Nat.∀v :: Vec α n.Vec α n

Note that the type v does not occur in the range: this is simply the non-dependent function space already
familiar to Haskell programmers. Rather than introduce unnecessary variables, such as v, we use the
ordinary function arrow for the non-dependent case. The identity on vectors then has the following,
equivalent, type:

∀α :: ∗.∀n :: Nat.Vec α n→ Vec α n

In Haskell, one can sometimes ‘fake’ the dependent function space [10], for instance by defining nat-
ural numbers on the type level (i.e., by defining data types Zero and Succ). Since the type-level numbers
are different from the value level natural numbers, one then ends up duplicating a lot of concepts on both
levels. Furthermore, even though one can lift certain values to the type level in this fashion, additional
effort – in the form of advanced type class programming – is required to perform any computation on
such types. Using dependent types, we can parameterize our types by values, and as we will shortly see,
the normal evaluation rules apply.

4Type theorists call dependent function types 5-types and would write 5α : ∗.5n : Nat.Vec α n instead. This is also why we
call the calculus λ5.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1015

e ⇓ v
e :: ρ ⇓ v ∗ ⇓ ∗

ρ ⇓ τ ρ ′ ⇓ τ ′

∀x :: ρ.ρ ′ ⇓ ∀x :: τ.τ ′ x ⇓ x

e ⇓ λx→ v e′ ⇓ v′

e e′ ⇓ v[x 7→ v′]
e ⇓ n e′ ⇓ v′

e e′ ⇓ n v′
e ⇓ v

λx→ e ⇓ λx→ v

Figure 8. Evaluation in λ5

Everything is a term Allowing values to appear freely in types breaks the separation of expressions,
types, and kinds we mentioned in the introduction. There is no longer a syntactic distinction between
these different levels: everything is a term. In Haskell, the symbol ‘::’ relates entities on different syn-
tactic levels: In 0 :: Nat, the 0 is syntactically a value and Nat a type, in Nat :: ∗, the Nat is a type and ∗ is
a kind. Now, ∗, Nat and 0 are all terms. While 0 :: Nat and Nat :: ∗ still hold, the symbol ‘::’ relates two
terms. We will still use the word “type” to refer to terms ρ with ρ :: ∗, and still call ∗ a “kind”, but all
these entities now reside on the same syntactic level. As a consequence, all language constructs are now
available everywhere. In particular, we have abstraction and application of types and kinds.

We have now familiarized ourselves with the core ideas of dependently typed systems. Next, we
discuss what we have to change in λ→ in order to accomplish these ideas and arrive at λ5.

3.1. Abstract syntax

We no longer have the need for a separate syntactic category of types or kinds, all constructs for all levels
are now integrated into the expression language:

e, ρ, κ ::= e :: ρ annotated term
| ∗ the type of types
| ∀x :: ρ.ρ ′ dependent function space
| x variable
| e e′ application
| λx→ e lambda abstraction

The modifications compared to the abstract syntax of the simply-typed lambda calculus in Section 2.1
are highlighted.

We now also use the symbols ρ and κ to refer to expressions, that is, we use them if the terms denoted
play the role of types or kinds, respectively.

New constructs are imported from what was formerly in the syntax of types and kinds. The kind ∗ is
now an expression. Arrow kinds and arrow types are subsumed by the new construct for the dependent
function space. Type variables and term variables now coincide.

3.2. Evaluation

The modified evaluation rules are in Figure 8. All the rules are the same as in the simply-typed case in
Figure 1, only the rules for the two new constructs are added. Perhaps surprisingly, evaluation now also
extends to types. But this is exactly what we want: the power of dependent types stems from the fact

1016 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

0 ::= ε empty context
| 0, x :: τ adding a variable

valid(ε)

valid(0) 0 ` τ ::↓∗
valid(0, x :: τ)

Figure 9. Contexts in λ5

that we can mix values and types, and that we have functions, and thus computations on the type level.
However, the new constructs are comparatively uninteresting for computation: the ∗ evaluates to itself;
in a dependent function space, we recurse structurally, evaluating the domain and the range. We must
extend the abstract syntax of values accordingly:

v, τ ::= n neutral term
| ∗ the type of types
| ∀x :: τ.τ ′ dependent function space
| λx→ v lambda abstraction

We now use the symbol τ for values that play the role of types.
Note that while types are now terms, we still separate the scope of types from that of values in the

sense that substitution in the application rule does not traverse into type annotations. We thus consider
the second occurrence of y in λx→ λy→ x :: y as free, not bound by the lambda.

3.3. Type system

Before we approach the type rules themselves, we must take a look at contexts again. It turns out that
because everything is a term now, the syntax of contexts becomes simpler, as do the rules for the validity
of contexts (Figure 9, compare with Figure 2).

Contexts now contain only one form of entry, stating the type a variable is assumed to have. Note
that we always store evaluated types in a context. The precondition 0 ` τ ::↓ ∗ in the validity rule
for non-empty contexts no longer refers to a special judgement for the well-formedness of types, but to
the type rules we are about to define – we no longer need special well-formedness rules for types. The
precondition ensures in particular that τ does not contain unknown variables.

The type rules are given in Figure 10. Type rules now relate a context, an expression and a value, i.e.,
all types are evaluated as soon as possible. Again, we have highlighted the differences from Figure 3. We
maintain the difference between rules for inference (::↑), where the type is an output, and checking (::↓),
where the type is an input. The new constructs ∗ and ∀ are among the constructs for which we can infer
the type. As before for λ→, we assume that all the contexts that occur in the type rules are valid.

For annotated terms (ANN), there are two changes. The kind check for the annotation ρ no longer
refers to the well-formedness rules for types, but is to the rules for type checking. Furthermore, because
the annotation ρ might not be a value, it is evaluated before it is returned.

The kind ∗ is itself of type ∗ (STAR). Although there are theoretical objections to this choice (see
Section 5), we believe that for the purpose of this article, the simplicity of our implementation outweighs
any such objections.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1017

0 ` ρ ::↓ ∗ ρ ⇓ τ

0 ` e ::↓ τ

0 ` (e :: ρ) ::↑ τ
(ANN)

0 ` ∗ ::↑ ∗
(STAR)

0 ` ρ ::↓ ∗ ρ ⇓ τ

0, x :: τ ` ρ ′ ::↓ ∗
0 ` ∀x :: ρ.ρ ′ ::↑ ∗

(PI)

0(x) = τ

0 ` x ::↑ τ
(VAR)

0 ` e ::↑ ∀x :: τ.τ ′ 0 ` e′ ::↓ τ

0 ` e e′ ::↑ τ ′[x 7→ e′]
(APP)

0 ` e ::↑ τ

0 ` e ::↓ τ
(INF)

0, x :: τ ` e ::↓ τ ′

0 ` λx→ e ::↓ ∀x :: τ.τ ′
(LAM)

Figure 10. Type rules for λ5

The rule for the dependent function space (PI) is somewhat similar to the well-formedness rule for
arrow types (FUN) for λ→ in Figure 2. Both the domain ρ and the range ρ ′ of the dependent function are
required to be of kind ∗. In contrast to the old rule FUN, ρ ′ may refer to x, thus we extend 0 by x :: τ

(where τ is the result of evaluating τ ′) while checking ρ ′.
Nothing significant changes for variables (VAR).
In a function application (APP), the function must now be of a dependent function type ∀x :: τ.τ ′. In

contrast to an ordinary function type, τ ′ can refer to x. In the result type of the application, we therefore
substitute the actual argument e′ for the formal parameter x in τ ′.

Checking an inferable term (INF) works as before: we first infer a type, then compare the two types
for equality. However, we are now dealing with evaluated types, so this is much stronger than syntactic
equality of type terms: it would be rather unfortunate if Vec α 2 and Vec α (1 + 1) did not denote the
same type. Our system indeed recognises them as equal, because both terms evaluate to Vec α 2. Most
type systems with dependent types have a rule of the form:

0 ` e :: ρ ρ =β ρ′

0 ` e :: ρ′

This rule, referred to as the conversion rule, however, is clearly not syntax directed. Our distinction
between inferable and checkable terms ensures that the only place where we need to apply the conversion
rule is when we check an inferable term (INF), which often happens when a term is explicitly annotated
with its type (ANN).

The final type rule is for checking a lambda abstraction (LAM). The difference here is that the type
is a dependent function type. Note that the bound variable x may now not only occur in the body of the
function e. The extended context 0, x :: τ is therefore used both for type checking the function body and
kind checking the range τ ′.

To summarize, all the modifications are motivated by the two key concepts we have introduced in
the beginning of Section 3: the function space is generalized to the dependent function space; types and
kinds are also terms.

3.4. Implementation

The type rules we have given are still syntax-directed and algorithmic, so the general structure of the λ→
implementation can be reused for λ5. In the following, we go through all aspects of the implementation,

1018 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

eval↑ Star d = VStar
eval↑ (Pi τ τ ′) d = VPi (eval↓ τ d) (λx→ eval↓ τ ′ (x : d))

subst↑ i r Star = Star
subst↑ i r (Pi τ τ ′) = Pi (subst↓ i r τ) (subst↓ (i+ 1) r τ ′)

quote i VStar = Inf Star
quote i (VPi v f)
= Inf (Pi (quote i v) (quote (i+ 1) (f (vfree (Quote i)))))

Figure 11. Extending evaluation, substitution and quotation to λ5

but only discuss the definitions that have to be modified.

Abstract syntax The type Name remains unchanged. So does the type Term↓. We no longer require
Type and Kind, but instead add two new constructors to Term↑ and replace the occurrence of Type in Ann
with a Term↓:

data Term↑
= Ann Term↓ Term↓
| Star
| Pi Term↓ Term↓
| Bound Int
| Free Name
| Term↑ :@: Term↓

deriving (Show, Eq)

We also extend the type of values with the new constructs.

data Value
= VLam (Value→ Value)

| VStar
| VPi Value (Value→ Value)

| VNeutral Neutral

As before, we use higher-order abstract syntax for the values, i.e., we encode binding constructs
using Haskell functions. With VPi, we now have a new binding construct. In the dependent function
space, a variable is bound that is visible in the range, but not in the domain. Therefore, the domain is
simply a Value, but the range is represented as a function of type Value→ Value.

Evaluation To adapt the evaluator, we just add the two new cases for Star and Pi to the eval↑ function,
as shown in Figure 11 (see Figure 4 for the evaluator for λ→). Evaluation of Star is trivial. For a Pi
type, both the domain and the range are evaluated. In the range, where the bound variable x is visible,
we have to add it to the environment.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1019

Contexts Contexts map variables to their types. Types are on the term level now. We store types in
their evaluated form, and thus define:

type Type = Value
type Context = [(Name, Type)]

Type checking Let us go through each of the cases in Figure 12 one by one – for comparison, the
cases for λ→are in Figure 5. For an annotated term, we first check that the annotation is a type of kind ∗,
using the type-checking function type↓. We then evaluate the type. The resulting value τ is used to check
the term e. If that succeeds, the entire expression has type v. Note that we assume that the term under
consideration in type↑ has no unbound variables, so all calls to eval↓ take an empty environment.

The (evaluated) type of Star is VStar.
For a dependent function type, we first kind-check the domain τ . Then the domain is evaluated to v.

The value is added to the context while kind-checking the range, as also shown in the corresponding type
rule PI.

There are no significant changes in the Free case.
In the application case, the type inferred for the function is a Value now. This type must be of the form

VPi τ τ ′, i.e., a dependent function type. In the corresponding type rule in Figure 10, the bound variable
x is substituted by e′ in the result type τ ′. In the implementation, τ ′ is a function, and the substitution is
performed by applying it to the (evaluated) e′.

In the case for Inf, we have to perform the type equality check. In contrast to the type rule INF, we
cannot compare values for equality directly in Haskell. Instead, we quote them and compare the resulting
terms syntactically.

In the case for Lam, we require a dependent function type of form VPi τ τ ′ now. As in the corre-
sponding case for λ→, we add the bound variable (of type τ) to the context while checking the body.
But we now perform substitution on the function body e (using subst↓) and on the result type τ ′ (by
applying τ ′).

We thus only have to extend the substitution functions, by adding the usual two cases for Star and Pi
as shown in Figure 11. There’s nothing to subsitute for Star. For Pi, we have to increment the counter
before substituting in the range because we pass a binder.

Quotation To complete our implementation of λ5, we only have to extend the quotation function. This
operation is more important than for λ→, because as we have seen, it is used in the equality check during
type checking. Again, we only have to add equations for VStar and VPi, which are shown in Figure 11.

Quoting VStar yields Star. Since the dependent function type is a binding construct, quotation for
VPi works similar to quotation of VLam: to quote the range, we increment the counter i, and apply the
Haskell function representing the range to Quote i.

3.5. Where are the dependent types?

We now have adapted our type system and its implementation to dependent types, but unfortunately, we
have not yet seen any examples.

1020 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

type↑ :: Int→ Context→ Term↑→ Result Type
type↑ i 0 (Ann e ρ)

= do type↓ i 0 ρ VStar
let τ = eval↓ ρ []
type↓ i 0 e τ

return τ

type↑ i 0 Star
= return VStar

type↑ i 0 (Pi ρ ρ ′)

= do type↓ i 0 ρ VStar
let τ = eval↓ ρ []
type↓ (i+ 1) ((Local i, τ) : 0)

(subst↓ 0 (Free (Local i)) ρ ′) VStar
return VStar

type↑ i 0 (Free x)
= case lookup x 0 of

Just τ → return τ

Nothing→ throwError "unknown identifier"
type↑ i 0 (e :@: e′)
= do σ ← type↑ i 0 e

case σ of
VPi τ τ ′ → do type↓ i 0 e′ τ

return (τ ′ (eval↓ e′ []))
→ throwError "illegal application"

type↓ :: Int→ Context→ Term↓→ Type→ Result ()

type↓ i 0 (Inf e) v
= do v′← type↑ i 0 e

unless (quote0 v = = quote0 v′) (throwError "type mismatch")
type↓ i 0 (Lam e) (VPi τ τ ′)

= type↓ (i+ 1) ((Local i, τ) : 0)

(subst↓ 0 (Free (Local i)) e) (τ ′ (vfree (Local i)))
type↓ i 0

= throwError "type mismatch"

Figure 12. Implementation of a type checker for λ5

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1021

Again, we have written a small interpreter around the type checker we have just presented, and we
can use it to define and check, for instance, the polymorphic identity function (where the type argument
is explicit), as follows:

〉〉 let id = (λα x→ x) :: ∀(α :: ∗).α→ α

id :: ∀(x :: ∗) (y :: x).x
〉〉 assume (Bool :: ∗) (False :: Bool)

〉〉 id Bool
λx→ x :: ∀x :: Bool.Bool
〉〉 id Bool False
False :: Bool

This is more than we can do in the simply-typed setting, but it is by no means spectacular and does not
require dependent types. Unfortunately, while we have a framework for dependent types in place, we
cannot write any interesting programs as long as we do not add at least a few specific data types to our
language.

4. Beyond λ5

In Haskell, data types are introduced by special data declarations:

data Nat = Zero | Succ Nat

This introduces a new type Nat, together with two constructors Zero and Succ. In this section, we
investigate how to extend our language with data types, such as natural numbers.

Obviously, we will need to add the type Nat together with its constructors; but how should we define
functions, such as addition, that manipulate numbers? In Haskell, we would define a function that pattern
matches on its arguments and makes recursive calls to smaller numbers:

plus :: Nat→ Nat→ Nat
plus Zero n = n
plus (Succ k) n = Succ (plus k n)

In our calculus so far, we can neither pattern match nor make recursive calls. How could we hope to
define plus?

In Haskell, we can define recursive functions on data types using a fold [15]. Rather than introduce
pattern matching and recursion, and all the associated problems, we define functions over natural num-
bers using the corresponding fold. In a dependently type setting, however, we can define a slightly more
general version of a fold called the eliminator.

The fold for natural numbers has the following type:

foldNat :: ∀α :: ∗.α→ (α→ α)→ Nat→ α

This much should be familiar. In the context of dependent types, however, there is no need for the type
α to be uniform across the constructors for natural numbers: rather than use α :: ∗, we use m :: Nat→ ∗.
This leads us to the following type of natElim:

1022 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

Nat ⇓ Nat Zero ⇓ Zero
k ⇓ l

Succ k ⇓ Succ l

mz ⇓ v
natElim m mz ms Zero ⇓ v

ms k (natElim m mz ms k) ⇓ v
natElim m mz ms (Succ k) ⇓ v

Figure 13. Evaluation of natural numbers

0 ` Nat :: ∗ 0 ` Zero :: Nat

0 ` k :: Nat

0 ` Succ k :: Nat

0 ` m :: Nat→ ∗
0, m :: Nat→ ∗ ` mz :: m Zero

0, m :: Nat→ ∗ ` ms :: ∀k :: Nat.m k→ m (Succ k)
0 ` n :: Nat

0 ` natElim m mz ms n :: m n

Figure 14. Typing rules for natural numbers

natElim :: ∀m :: Nat→ ∗. m Zero
→ (∀k :: Nat.m k→ m (Succ k))
→ ∀n :: Nat.m n

The first argument of the eliminator is the sometimes referred to as the motive [9]; it explains the reason
we want to eliminate natural numbers. The second argument corresponds to the base case, where n is
Zero; the third argument corresponds to the inductive case where n is Succ k, for some k. In the inductive
case, we must describe how to construct m (Succ k) from k and m k. The result of natElim is a function
that given any natural number n, will compute a value of type m n.

In summary, adding natural numbers to our language involves adding three separate elements: the
type Nat, the constructors Zero and Succ, and the eliminator natElim.

4.1. Implementing natural numbers

To implement these three components, we extend the abstract syntax and correspondingly add new cases
to the evaluation and type checking functions. These new cases do not require any changes to existing
code; we choose to focus only on the new code fragments.

Abstract Syntax To implement natural numbers, we extend our abstract syntax as follows:

data Term↑ = . . .

| Nat
| NatElim Term↓ Term↓ Term↓ Term↓

data Term↓ = . . .

| Zero
| Succ Term↓

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1023

eval↓ Zero d = VZero
eval↓ (Succ k) d = VSucc (eval↓ k d)

eval↑ Nat d = VNat
eval↑ (NatElim m mz ms n) d
= let mzVal = eval↓ mz d

msVal = eval↓ ms d
rec nVal =

case nVal of
VZero → mzVal
VSucc k → msVal ‘vapp‘ k ‘vapp‘ rec k
VNeutral n→ VNeutral

(NNatElim (eval↓ m d) mzVal msVal n)

→ error "internal: eval natElim"
in rec (eval↓ n d)

Figure 15. Extending the evaluator natural numbers

We add new constructors corresponding to the type of and eliminator for natural numbers to the
Term↑ data type. The NatElim constructor is fully applied: it expects no further arguments.

Similarly, we extend Term↓ with the constructors for natural numbers. This may seem odd: we will
always know the type of Zero and Succ, so why not add them to Term↑ instead? For more complicated
types, however, such as dependent pairs, it is not always possible to infer the type of the constructor
without a type annotation. We choose to add all constructors to Term↓, as this scheme will work for all
data types.

Evaluation We need to rethink our data type for values. Previously, values consisted exclusively of
lambda abstractions and ‘stuck’ applications. Clearly, we will need to extend the data type for values to
cope with the new constructors for natural numbers.

data Value = . . .

| VNat
| VZero
| VSucc Value

Introducing the eliminator, however, also complicates evaluation. The eliminator for natural numbers
can also be stuck when the number being eliminated does not evaluate to a constructor. Correspondingly,
we extend the data type for neutral terms to cover this case:

data Neutral = . . .

| NNatElim Value Value Value Neutral

The implementation of evaluation in Figure 15 closely follows the rules in Figure 13. The elimi-
nator is the only interesting case. Essentially, the eliminator evaluates to the Haskell function with the

1024 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

type↓ i 0 Zero VNat = return ()

type↓ i 0 (Succ k) VNat = type↓ i 0 k VNat

type↑ i 0 Nat = return VStar
type↑ i 0 (NatElim m mz ms n) =

do type↓ i 0 m (VPi VNat (const VStar))
let mVal = eval↓ m []
type↓ i 0 mz (mVal ‘vapp‘ VZero)

type↓ i 0 ms (VPi VNat (λk→ VPi (mVal ‘vapp‘ k) (λ → mVal ‘vapp‘ VSucc k)))
type↓ i 0 n VNat
let nVal = eval↓ n []
return (mVal ‘vapp‘ nVal)

Figure 16. Extending the type checker for natural numbers

behaviour you would expect: if the number being eliminated evaluates to VZero, we evaluate the base
case mz; if the number evaluates to VSucc k, we apply the step function ms to the predecessor k and the
recursive call to the eliminator; finally, if the number evaluates to a neutral term, the entire expression
evaluates to a neutral term. If the value being eliminated is not a natural number or a neutral term, this
would have already resulted in a type error. Therefore, the final catch-all case should never be executed.

Typing Figure 16 contains the implementation of the type checker that deals with natural numbers.
Checking that Zero and Succ construct natural numbers is straightforward.

Type checking the eliminator is bit more involved. Remember that the eliminator has the following
type:

natElim :: ∀m :: Nat→ ∗. m Zero
→ (∀k :: Nat.m k→ m (Succ k))
→ ∀n :: Nat.m n

We begin by type checking and evaluating the motive m. Once we have the value of m, we type check
the two branches. The branch for zero should have type m Zero; the branch for successors should have
type ∀k :: Nat.m k→ m (Succ k). Despite the apparent complication resulting from having to hand code
complex types, type checking these branches is exactly what would happen when type checking a fold
over natural numbers in Haskell. Finally, we check that the n we are eliminating is actually a natural
number. The return type of the entire expression is the motive, accordingly applied to the number being
eliminated.

Other functions To complete the implementation of natural numbers, we must also extend the aux-
iliary functions for substitution and quotations with new cases. All new code is, however, completely
straightforward, because no new binding constructs are involved.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1025

Addition With all the ingredients in place, we can finally define addition in our interpreter as fol-
lows:

〉〉 let plus = natElim (λ → Nat→ Nat)
(λn→ n)

(λk rec n→ Succ (rec n))

plus :: ∀(x :: Nat) (y :: Nat).Nat

We define a function plus by eliminating the first argument of the addition. In each case branch, we must
define a function of type Nat→ Nat; we choose our motive correspondingly. In the base case, we must
add zero to the argument n – we simply return n. In the inductive case, we are passed the predecessor k,
the recursive call rec (that corresponds to adding k), and the number n, to which we must add Succ k.
We proceed by adding k to n using rec, and wrapping an additional Succ around the result. After having
defined plus, we can evaluate simple additions in our interpreter:5

〉〉 plus 40 2
42 :: Nat

4.2. Implementing vectors

Natural numbers are still not particularly exciting: they are still the kind of data type we can write quite
easily in Haskell. As an example of a data type that really makes use of dependent types, we show how
to implement vectors.

As was the case for natural numbers, we need to define three separate components: the type of
vectors, its constructors, and the eliminator. We have already mentioned that vectors are parameterized
by both a type and a natural number:

∀α :: ∗.∀n :: Nat.Vec α n :: ∗

The constructors for vectors are analogous to those for Haskell lists. The only difference is that their
types record the length of the vector:

Nil :: ∀α :: ∗.Vec α Zero
Cons :: ∀α :: ∗.∀n :: Nat.α→ Vec α n→ Vec α (Succ n)

Generating vectors The eliminator for vectors behaves essentially the same as foldr on lists, but its
type is a great deal more specific (and thus, more involved):

vecElim :: ∀α :: ∗.∀m :: (∀n :: Nat.Vec α n→ ∗).
m Zero (Nil α)

→ (∀n :: Nat.∀x :: α.∀xs :: Vec α n.

m n xs→ m (Succ n) (Cons α n x xs))
→ ∀n :: Nat.∀xs :: Vec α n.m n xs

5For convenience, our parser and pretty-printer support literals for natural numbers. For instance, 2 is translated to
Succ (Succ Zero) :: Nat on the fly.

1026 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

eval↑ (VecElim α m mn mc n xs) d =
let mnVal = eval↓ mn d

mcVal = eval↓ mc d
rec nVal xsVal =

case xsVal of
VNil → mnVal
VCons k x xs→ foldl vapp mcVal [k, x, xs, rec k xs]
VNeutral n → VNeutral

(NVecElim (eval↓ α d) (eval↓ m d)

mnVal mcVal nVal n)

→ error "internal: eval vecElim"
in rec (eval↓ n d) (eval↓ xs d)

Figure 17. Implementation of the evaluation of vectors

The whole eliminator is quantified over the element type α of the vectors. The next argument of the
eliminator is the motive. As was the case for natural numbers, the motive is a type (kind ∗) parameterized
by a vector. As vectors are themselves parameterized by their length, the motive expects an additional
argument of type Nat. The following two arguments are the cases for the two constructors of Vec. The
constructor Nil is for empty vectors, so the corresponding argument is of type m Zero (Nil α). The case
for Cons takes a number n, an element x of type α, a vector xs of length n, and the result of the recursive
application of the eliminator of type m n xs. It combines those elements to form the required type, for
the vector of length Succ n where x has been added to xs. The final result is a function that eliminates a
vector of any length.

The type of the eliminator may look rather complicated. However, if we compare with the type of
foldr on lists

foldr :: ∀α :: ∗.∀m :: ∗.m→ (α→ m→ m)→ [α]→ m

we see that the structure is the same, and the additional complexity stems only from the fact that the
motive is parameterized by a vector, and vectors are in turn parameterized by natural numbers.

Not all of the arguments of vecElim are actually required – some of the arguments can be inferred
from others, to reduce the noise and make writing programs more feasible. We would like to remind you
that λ5 is designed to be a very explicit, low-level language.

Abstract syntax As was the case for natural numbers, we extend the abstract syntax. We add the type
of vectors and its eliminator to Term↑; we extend Term↓ with the constructors Nil and Cons.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1027

data Term↑ = . . .

| Vec Term↓ Term↓
| VecElim Term↓ Term↓ Term↓ Term↓ Term↓ Term↓

data Term↓ = . . .

| Nil Term↓
| Cons Term↓ Term↓ Term↓ Term↓

Note that also Nil takes an argument, because both constructors are polymorphic in the element type.
Correspondingly, we extend the data types for values and neutral terms:

data Value = . . .

| VNil Value
| VCons Value Value Value Value
| VVec Value Value

data Neutral = . . .

| NVecElim Value Value Value Value Value Neutral

Evaluation Evaluation of constructors or the Vec type proceeds structurally, turning terms into their
value counterparts. Once again, the only interesting case is the evaluation of the eliminator for vectors,
shown in Figure 17. As indicated before, the behaviour resembles a fold on lists: depending on whether
the vector is a VNil or a VCons, we apply the appropriate argument. In the case for VCons, we also
call the eliminator recursively on the tail of the vector (of length k). If the eliminated vector is a neutral
element, we cannot reduce the eliminator, and produce a neutral term again.

Type checking We extend the type checker as shown in Figure 18. The code is relatively long, but
keeping the types of each of the constructs in mind, there are absolutely no surprises.

As for natural numbers, we have omitted the new cases for substitution and quotation, because they
are entirely straightforward.

Append We are now capable of demonstrating a real dependently typed program in action, a function
that appends two vectors while keeping track of their lengths. The definition in the interpreter looks as
follows:

〉〉 let append =
(λα→ vecElim α

(λm → ∀(n :: Nat).Vec α n→ Vec α (plus m n))

(λ v→ v)
(λm v vs rec n w→ Cons α (plus m n) v (rec n w)))

:: ∀(α :: ∗) (m :: Nat) (v :: Vec α m) (n :: Nat) (w :: Vec α n).

Vec α (plus m n)

Like for plus, we define a binary function on vectors by eliminating the first argument. The motive is
chosen to expect a second vector. The length of the resulting vector is the sum of the lengths of the

1028 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

type↓ i 0 (Nil α) (VVec bVal VZero) =

do type↓ i 0 α VStar
let aVal = eval↓ α []
unless (quote0 aVal = = quote0 bVal)

(throwError "type mismatch")
type↓ i 0 (Cons α n x xs) (VVec bVal (VSucc k)) =

do type↓ i 0 α VStar
let aVal = eval↓ α []
unless (quote0 aVal = = quote0 bVal)

(throwError "type mismatch")
type↓ i 0 n VNat
let nVal = eval↓ n []
unless (quote0 nVal = = quote0 k)

(throwError "number mismatch")
type↓ i 0 x aVal
type↓ i 0 xs (VVec bVal k)

type↑ i 0 (Vec α n) =

do type↓ i 0 α VStar
type↓ i 0 n VNat
return VStar

type↑ i 0 (VecElim α m mn mc n vs) =
do type↓ i 0 α VStar

let aVal = eval↓ α []
type↓ i 0 m

(VPi VNat (λn→ VPi (VVec aVal n) (λ → VStar)))
let mVal = eval↓ m []
type↓ i 0 mn (foldl vapp mVal [VZero, VNil aVal])
type↓ i 0 mc

(VPi VNat (λn→
VPi aVal (λy→
VPi (VVec aVal n) (λys→
VPi (foldl vapp mVal [n, ys]) (λ →

(foldl vapp mVal [VSucc n, VCons aVal n y ys]))))))
type↓ i 0 n VNat
let nVal = eval↓ n []
type↓ i 0 vs (VVec aVal nVal)
let vsVal = eval↓ vs []
return (foldl vapp mVal [nVal, vsVal])

Figure 18. Extending the type checker for vectors

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1029

argument vectors plus m n. Appending an empty vector to another vector v results in v. Appending a
vector of the form Cons m v vs to a vector v works by invoking recursion via rec (which appends vs to
w) and prepending v. Of course, we can also apply the function thus defined:

〉〉 assume (α :: ∗) (x :: α) (y :: α)

〉〉 append α 2 (Cons α 1 x (Cons α 0 x (Nil α)))

1 (Cons α 0 y (Nil α))

Cons α 2 x (Cons α 1 x (Cons α 0 y (Nil α))) :: Vec α 3

We assume a type α with two elements x and y, and append a vector containing two x’s to a vector
containing one y.

4.3. Discussion

In this section we have shown how to add two data types to our core theory: natural numbers and
vectors. Using exactly the same principles, many more data types can be added. For example, for any
natural number n, we can define the type Fin n that contains exactly n elements. In particular, Fin 0, Fin 1
and Fin 2 are the empty type, the unit type, and the type of booleans respectively. Furthermore, Fin can
be used to define a total projection function from vectors, of type

project :: ∀(α :: ∗) (n :: Nat).Vec α n→ Fin n→ α

Another interesting dependent type is the equality type

Eq :: ∀(α :: ∗).α→ α→ ∗

with a single constructor

Refl :: ∀(α :: ∗) (x :: α)→ Eq α x x

Using Eq, we can state and prove theorems about our code directly in λ5. For instance, the type

∀(α :: ∗) (n :: Nat).Eq Nat (plus n Zero) n

states that Zero is the right-neutral element of addition. Any term of that type serves as a proof of that
theorem, via the Curry-Howard isomorphism.

These examples and a few more are included with the interpreter in the article sources, which can be
downloaded via the λ5 homepage [6]. More about suitable data types for dependently typed languages
and writing dependently typed programs can be found in another tutorial [11].

Throughout this section, we have chosen to extend the abstract syntax of our language for every data
type we add. Alternatively, we could use the Church encoding of data types, e.g., representing natural
numbers by the type ∀(α ::∗).α→ (α→ α)→ α. Although this choice may seem to require less effort,
it does introduce some problems. Although we can use the Church encoding to write simple folds, we
cannot write dependently typed programs that rely on eliminators without extending our theory further.
This makes it harder to write programs with an inherently dependent type, such as our append function.
As our core theory should be able to form the basis of a dependently typed programming language, we
chose to avoid using such an encoding.

1030 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

5. Toward dependently typed programming

The calculus we have described is far from a real programming language. Although we can write, type
check, and evaluate simple expressions there is still a lot of work to be done before it becomes feasible
to write large, complex programs. In this section, we do not strive to enumerate all the problems that
large-scale programming with dependent types must face, let alone solve them. Instead, we try to sketch
how a programming language may be built on top of the core calculus we have seen so far and point you
to related literature.

As our examples illustrate, programming with eliminators does not scale. Epigram [14] uses a clever
choice of motive to make programming with eliminators a great deal more practical [8, 13]. By choosing
the right motive, we can exploit type information when defining complicated functions. Eliminators may
not appear to be terribly useful, but they form the foundations on which dependently typed programming
languages may be built.

Writing programs with complex types in one go is not easy. Epigram and Agda [17] allow pro-
grammers to put ‘holes’ in their code, leaving parts of their programs undefined [18]. Programmers can
then ask the system what type a specific hole has, effectively allowing the incremental development of
complex programs.

As it stands, the core system we have presented requires programmers to explicitly instantiate poly-
morphic functions. This is terribly tedious! Take the append function we defined: of its five arguments,
only two are interesting. Fortunately, uninteresting arguments can usually be inferred. Many program-
ming languages and proof assistants based on dependent types have support for implicit arguments that
the user can omit when calling a function. Note that these arguments need not be types: the append
function is ‘polymorphic’ in the length of the vectors.

Finally, we should reiterate that the type system we have presented is unsound. As the kind of ∗ is
itself ∗, we can encode a variation of Russell’s paradox, known as Girard’s paradox [2]. This allows us
to create an inhabitant of any type. To fix this, the standard solution is to introduce an infinite hierarchy
of types: the type of ∗ is ∗1, the type of ∗1 is ∗2, and so forth.

6. Discussion

There is a large amount of relevant literature regarding both implementing type systems and type theory.
Pierce’s book [19] is an excellent place to start. Martin-Löf’s notes on type theory [7] are still highly
relevant and form an excellent introduction to the subject. More recent books by Nordström et al. [16]
and Thompson [20] are freely available online.

There are several dependently typed programming languages and proof assistants readily available.
Coq [1] is a mature, well-documented proof assistant. While it is not primarily designed for dependently
typed programming, learning Coq can help get a feel for type theory. Haskell programmers may feel
more at home using recent versions of Agda [17], a dependently typed programming language. Not
only does the syntax resemble Haskell, but functions may be defined using pattern matching and general
recursion. Finally, Epigram [14, 11] proposes a more radical break from functional programming as
we know it. While the initial implementation is far from perfect, many of Epigram’s ideas are not yet
implemented elsewhere.

A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus 1031

Other implementations of the type system we have presented here have been published elsewhere [3,
4]. These implementations are given in pseudocode and accompanied by a proof of correctness. The
focus of our article is somewhat different: we have chosen to describe a concrete implementation as a
vehicle for explanation.

In the introduction we mentioned some of the concerns functional programmers have regarding de-
pendent types. The type checking algorithm we have presented here is decidable and will always termi-
nate. The phase distinction between evaluation and type checking becomes more subtle, but is not lost.
The fusion of types and terms introduces new challenges, but also has a lot to offer. Most importantly,
though, getting started with dependent types is not as hard as you may think. We hope to have whet
your appetite, guiding you through your first steps, but encourage you to start exploring dependent types
yourself!

Acknowledgements We would like to thank Thorsten Altenkirch, Lennart Augustsson, Isaac Dupree,
Clemens Fruhwirth, Jurriaan Hage, Stefan Holdermans, Shin-Cheng Mu, Phil Wadler, the students from
the autumn 2007 seminar on Type Systems at Utrecht University, the Lambda the Ultimate-community,
and the anonymous referees for their helpful comments on a previous version of this article.

References

[1] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of
Inductive Constructions, Springer Verlag, 2004.

[2] Coquand, T.: An analysis of Girard’s paradox, First IEEE Symposium on Logic in Computer Science, 1986.

[3] Coquand, T.: An Algorithm for Type-Checking Dependent Types, Science of Computer Programming, 26(1-
3), 1996, 167–177.

[4] Coquand, T., Takeyama, M.: An Implementation of Type: Type, International Workshop on Types for Proofs
and Programs, 2000.

[5] Hinze, R., Löh, A.: lhs2TEX, 2007, http://www.cs.uu.nl/~andres/lhs2tex.

[6] λ5 homepage, 2007, http://www.cs.uu.nl/~andres/LambdaPi.

[7] Martin-Löf, P.: Intuitionistic type theory, Bibliopolis, 1984.

[8] McBride, C.: Dependently Typed Functional Programs and their Proofs, Ph.D. Thesis, University of Edin-
burgh, 1999.

[9] McBride, C.: Elimination with a Motive, TYPES ’00: Selected papers from the International Workshop on
Types for Proofs and Programs, Springer-Verlag, 2000.

[10] McBride, C.: Faking it: Simulating Dependent Types in Haskell, Journal of Functional Programming, 12(5),
2002, 375–392.

[11] McBride, C.: Epigram: Practical Programming with Dependent Types., Advanced Functional Programming,
2004.

[12] McBride, C., McKinna, J.: Functional pearl: I am not a number – I am a free variable, Haskell ’04: Proceed-
ings of the 2004 ACM SIGPLAN workshop on Haskell, 2004.

[13] McBride, C., McKinna, J.: The view from the left, Journal of Functional Programming, 14(1), 2004, 69–111.

1032 A. Löh, C. McBride, W. Swierstra / A tutorial implementation of a dependently typed lambda calculus

[14] McBride, C. et al.: Epigram, 2004, http://www.e-pig.org.

[15] Meijer, E., Fokkinga, M., Paterson, R.: Functional Programming with Bananas, Lenses, Envelopes and
Barbed Wire, 5th Conf. on Functional Programming Languages and Computer Architecture, 1991.

[16] Nordström, B., Petersson, K., Smith, J. M.: Programming in Martin-Löf’s Type Theory: An Introduction,
Clarendon, 1990.

[17] Norell, U.: Agda 2, http://appserv.cs.chalmers.se/users/ulfn/wiki/agda.php.

[18] Norell, U., Coquand, C.: Type checking in the presence of meta-variables, Submitted to Typed Lambda
Calculi and Applications 2007.

[19] Pierce, B. C.: Types and Programming Languages, MIT Press, Cambridge, MA, USA, 2002, ISBN 0-262-
16209-1.

[20] Thompson, S.: Type Theory and Functional Programming, Addison Wesley Longman Publishing Co., Inc.,
1991.

