
Hierarchy in Generic Programming Libraries

José Pedro Magalhães1 and Andres Löh2

1 jpm@cs.ox.ac.uk. Department of Computer Science, University of Oxford
2 andres@well-typed.com. Well-Typed LLP

Abstract. Generic programming (GP) is a form of abstraction in programming
languages that serves to reduce code duplication by exploiting the regular struc-
ture of algebraic datatypes. Several different approaches to GP in Haskell have
surfaced, giving rise to the problem of code duplication across GP libraries. Given
the original goals of GP, this is a rather unfortunate turn of events. Fortunately, we
can convert between the different representations of each approach, which allows
us to “borrow” generic functions from different approaches, avoiding the need to
reimplement every generic function in every single GP library.
In previous work we have shown how existing GP libraries relate to each other.
In this paper we go one step further and advocate “hierarchical GP”: through
proper design of different GP approaches, each library can fit neatly in a hier-
archy, greatly minimizing the amount of supporting infrastructure necessary for
each approach, and allowing each library to be specific and concise, while elim-
inating code duplication overall. We introduce a new library for GP in Haskell
intended to sit at the top of the “GP hierarchy”. This library contains a lot of
structural information, and is not intended to be used directly. Instead, it is a
good starting point for generating generic representations for other libraries. This
approach is also suitable for being the only library with native compiler support;
all other approaches can be obtained from this one by simple conversion of rep-
resentations in plain Haskell code.

1 Introduction

Generic programs are concise, abstract, and reusable. They allow one single definition
to be used for many kinds of data, existing and to come. For example, parsing and
pretty-printing, (de-)serialisation, test data generation, and traversals can all be imple-
mented generically, freeing the programmer to implement only datatype-specific func-
tionality.

Given its power, it’s no surprise that GP approaches abound: including pre-proces-
sors, template-based approaches, language extensions, and libraries, there are well over
15 different approaches to GP in Haskell (Magalhães 2012, Chapter 8). This abun-
dance is partly caused by the lack of a clearly superior approach; each approach has
its strengths and weaknesses, uses different implementation mechanisms, a different
generic view (Holdermans et al. 2006) (i.e. a different representation of datatypes), or
focuses on solving a particular task. Their number and variety makes comparisons diffi-
cult, and can make prospective GP users struggle even before actually writing a generic
program, since first they have to choose a library that is appropriate for their needs.

2 José Pedro Magalhães and Andres Löh

We have previously investigated how to model and formally relate some Haskell GP
libraries using Agda (Magalhães and Löh 2012), and concluded that some approaches
clearly subsume others. Afterwards, we have shown how to reduce code duplication
in GP libraries in Haskell by converting between the representations of different ap-
proaches, in what we dubbed “generic generic programming” (Magalhães and Löh
2014).

To help understand the benefits of our work, it is important to distinguish three kinds
of users of GP:

Compiler writer As far as GP goes, the compiler writer is concerned with which ap-
proach(es) are natively supported by the compiler. At the moment, in the main
Haskell compiler GHC, both syb (Lämmel and Peyton Jones 2003, 2004) and
generic-deriving (Magalhães et al. 2010) are natively supported. This means
that the compiler can automatically generate the necessary generic representations
to enable using these approaches. A quick analysis reveals that in GHC there are
about 226 lines of code for supporting syb, and 884 for generic-deriving.

GP library author The library author maintains one or more GP libraries, and possi-
bly creates new ones. Since most approaches are not natively supported, the library
author has to deal with generating generic representations for their library (or ac-
cept that no end user will use this library, given the amount of boilerplate code they
would have to write). Typically, the library author will rely on Template Haskell
(TH, Sheard and Peyton Jones 2002) for this task. Given that TH handles code
generation at the AST level (thus syntactic), this is not a pleasant task. Furthermore,
the TH API changes as frequently as the compiler, so the library author currently
has to update its supporting code frequently.

End users The end users know nothing about compiler support, and ideally not even
about library-specific detail. They simply want to use a particular generic function
on their data, with minimum overhead.

While Magalhães and Löh (2014) focused mostly on improving the life of the end
user, the work we describe in this paper brings more advantages to the compiler writer
and GP library author. We elaborate further on the idea of generic generic programming
by highlighting the importance of hierarchy in GP approaches. Each new GP library
should only be a piece of the puzzle, specialising in one task, or exploring a new generic
representation, but obtaining most of its supporting infrastructure (such as example
generic functions) from already existing approaches. To facilitate this, we introduce a
new GP library, structured, which we use as a core to derive representations for other
GP libraries. Defining a new library does not mean introducing a lot of new supporting
code. In fact, we do not even think many generic functions will ever be defined in our
new library, as its representation is verbose (albeit precise). Instead, we use it to guide
conversion efforts, as a highly structured approach provides a good foundation to build
upon.

From the compiler writer’s perspective, this library would be the only one needing
compiler support; support for other libraries follows automatically from conversions
that are defined in plain Haskell, not through more compiler extensions. Since struc-
tured has only one representation, as opposed to generic-deriving’s two represen-
tations, we believe that supporting it in GHC would require fewer lines of code than the

Hierarchy in Generic Programming Libraries 3

existing support for generic-deriving. The code for supporting generic-deriving
and syb could then be removed, as those representations can be obtained from struc-
tured.

Should we ever find that we need more information in structured to support
converting to other libraries, we can extend it without changing any of the other li-
braries. This obviates the need to change the compiler for supporting or adapting GP
approaches. It also simplifies the life of the GP library author, who no longer needs to
rely on meta-programming tools.

Specifically, our contributions are the following:

– A new library for GP, structured, which properly encodes the nesting of the
different structures within a datatype representation (Section 2). We propose this
libary as a foundation for GP in Haskell, from which many other approaches can
be derived. It is designed to be highly expressive and easily extensible, serving as a
back-end for more stable and established GP libraries.

– We show how structured can provide GP library authors with different views of
the nesting of constructors and fields (Section 3). Different generic functions prefer
different balancings, which we provide through automatic conversion (instead of
duplicated encodings differing only in the balancing).

– We position structured at the top of GP hierarchy by showing how to derive
generic-deriving (Magalhães et al. 2010) representations from it (Section 4).
This also shows how structured unifies the two generic representations of gener-
ic-deriving. Representations for other libraries (regular (Van Noort et al. 2008),
multirec (Rodriguez Yakushev et al. 2009), and syb (Lämmel and Peyton Jones
2003, 2004)) can then be obtained from generic-deriving.

structured
Section 2

generic-deriving1
Section 4.3

generic-deriving0
Section 4.2

regular multirec syb

Fig. 1. Hierarchical relationship between GP approaches.

Figure 1 shows an overview of the hierarchical relationships between different li-
braries for GP in Haskell. In this paper, we introduce structured and its conversion to
generic-deriving. We refer the reader to Magalhães and Löh (2014) for the conver-
sions from generic-deriving.

4 José Pedro Magalhães and Andres Löh

1.1 Notation

In order to avoid syntactic clutter and to help the reader, we adopt a liberal Haskell
notation in this paper. We assume the existence of a kind keyword, which allows us to
define kinds directly. These kinds behave as if they had arisen from datatype promotion
(Yorgey et al. 2012), except that they do not define a datatype and constructors. We
omit the keywords type family and type instance entirely, making type-level functions
look like their value-level counterparts. We colour constructors in blue, types in red,
and kinds in green. In case the colours cannot be seen, the “level” of an expression is
clear from the context. Additionally, we use Greek letters for type variables, apart from
κ , which is reserved for kind variables.

This syntactic sugar is only for presentation purposes. An executable version of the
code, which compiles with GHC 7.8.3, is available at http://dreixel.net/research/
code/hgp.zip. We rely on many GHC-specific extensions to Haskell, which are essen-
tial for our development. Due to space constraints we cannot explain them all in detail,
but we try to point out relevant features as we use them.

1.2 Structure of the paper

The remainder of this paper is structured as follows. We first introduce the structured
library (Section 2). We then see how to obtain views with different balancings of the
constructors and constructor arguments (Section 3). Afterwards, we see how to obtain
generic-deriving from structured (Section 4). We conclude with a discussion in
Section 5.

2 A highly structured GP library

Our efforts of modularising a hierarchy of GP libraries stem from a structured library
intended to sit at the top of the hierarchy. Our goal is to define a library that is highly
expressive, without having to worry about convenience of use. Users requiring the level
of detail given by structured can use it directly, but we expect most to prefer using
any of the other, already existing GP libraries. Usability is not our concern here; ex-
pressiveness is. Stability is also not guaranteed; we might extend our library as needed
to support converting to more approaches. Previous approaches had to find a careful
balance between having too little information in the generic representation, resulting
in a library with poor expressiveness, and having too much information, resulting in a
verbose and hard to use approach. Given our modular approach, we are free from these
concerns.

The design of structured we give here is preliminary; we plan to extend it in the
future in order to support representing more datatypes. In fact, as the type language of
GHC grows with new extensions, we expect to keep changing structured frequently.
However, the simple fact that we introduce structured, and show how to use it for
decoupling generic-deriving from the compiler, improves the current status quo. In
particular, if structured is supported through automatic deriving in GHC, no more
compiler support is required for the other libraries. Using this library also improves

http://dreixel.net/research/code/hgp.zip
http://dreixel.net/research/code/hgp.zip

Hierarchy in Generic Programming Libraries 5

modularity; it can be updated or extended more freely, since supporting the other li-
braries requires only updating the conversions, not the compiler itself (for the automatic
derivation of instances).

In our previous work (Magalhães and Löh 2014) we have shown how to obtain
the representation of many libraries from generic-deriving. Given that structured,
at the time of writing, serves only to provide a conversion to generic-deriving, the
reader might think that it is unnecessary. We have several reasons justifying struc-
tured, however:

– The generic-deriving library has been around for some time now, and lots of
code using it has been written. Sticking to generic-deriving as a foundational
approach would force us to break lots of code whenever we would need to update
it in order to support new approaches, or to add functionality.

– By introducing structured, we can decouple most of generic-deriving from
the compiler. In particular, the mechanism for deriving generic-deriving in-
stances can be simplified, because generic-deriving has two representations
(which need to be derived separately), while structured has only one (from which
we can derive both generic-deriving representations).

– Being a new approach designed to be an internal representation, structured can be
changed without worrying too much about breaking existing code; the only code
that would need to be adapted is that for the conversion to generic-deriving.
This is plain Haskell code, not compiler code or TH, so it’s easier to update and
maintain.

We now proceed to describe the representation types in structured, their interpre-
tation as values, and the conversion between user datatypes and their generic represen-
tations, together with example encodings.

2.1 Universe

The structure used to encode datatypes in a GP approach is called its universe (Morris
2007). The universe of structured, for now, is similar to that of generic-deriving
(Magalhães 2012, Chapter 11), as it supports abstraction over at most one datatype
parameter. We choose to restrict this parameter to be the last of the datatype, and only if
its kind is ?. This is a pragmatic decision: many generic functions, such as map, require
abstraction over one parameter, but comparatively few require abstraction over more
than one parameter. For example, in the type [α], the parameter is α , and in Either α β ,
it is β . The differences to generic-deriving lay in the explicit hierarchy of data,
constructor, and field, and the absence of two separate ways of encoding constructor
arguments. It might seem unsatisfactory that we do not improve on the limitations of
generic-deriving with regards to datatype parameters, but that is secondary to our
goal in this paper (and it would be easy to implement support for multiple parameters
in structured following the strategy of Magalhães (2014)). Furthermore, structured
can easily be improved later, keeping the other libraries unchanged, and adapting only
the conversions if necessary.

Datatypes are represented as types of kind Data. We define new kinds, whose types
are not inhabited by values: only types of kind ? are inhabited by values. These kinds

6 José Pedro Magalhães and Andres Löh

can be thought of as datatypes, but their “constructors” will be used as indices of a
GADT (Schrijvers et al. 2009) to construct values with a specific structure.

Datatypes have some metadata, such as their name, and contain constructors. Con-
structors have their own metadata, and contain fields. Finally, each field can have meta-
data, and contain a value of some structure:

kind Data = Data MetaData (Tree Con)
kind Con = Con MetaCon (Tree Field)
kind Field = Field MetaField Arg
kind Tree κ = Empty | Leaf κ | Bin (Tree κ) (Tree κ)

We use a binary leaf tree to encode the structure of the constructors in a datatype, and
the fields in a constructor. Typically lists are used, but we will see in Section 3 that it is
convenient to encode the structure as a tree, as we can change the way it is balanced for
good effect.

The metadata we store is unsurprising:

kind MetaData = MD Symbol -- datatype name
Symbol -- datatype module name
Bool -- is it a newtype?

kind MetaCon = MC Symbol -- constructor name
Fixity -- constructor fixity
Bool -- does it use record syntax?

kind MetaField = MF (Maybe Symbol) -- field name

kind Fixity = Prefix | Infix Associativity Nat
kind Associativity = LeftAssociative | RightAssociative | NotAssociative
kind Nat = Ze | Su Nat
kind Symbol -- internal

It is important to note that this metadata is encoded at the type level. In particular, we
have type-level strings and natural numbers. We make use of the current (in GHC 7.8.3)
implementation of type-level strings, whose kind is Symbol.

Finally, Arg describes the structure of constructor arguments:

kind Arg = K KType ?
| Rec RecType (?→ ?)
| Par
| (?→ ?) :◦: Arg

kind KType = P | R RecType | U
kind RecType = S | O

A field can either be a datatype parameter other than the last (K P), an occurrence of a
different datatype of kind ? (K (R O)), some other type (such as an application of a type
variable, encoded with K U), a datatype of kind (at least) ?→ ? (Rec), which can be

Hierarchy in Generic Programming Libraries 7

either the same type we’re encoding (S) or a different one (O), the (last) parameter of
the datatype (Par), or a composition of a type constructor with another argument (:◦:).

The representation is best understood in terms of an example. Consider the follow-
ing datatype:

data D φ α β = D1 Int (φ α) | D2 [D φ α β] β

We first show the encoding of each of the four constructor arguments: Int is a datatype
of kind ?, so it’s encoded with K (R O) Int; φ α depends on the instantiation of φ , so
it’s encoded with K U (φ α); [D φ α β] is a composition between the list functor and
the datatype we’re defining, so it’s encoded with [] :◦: Rec S (D φ α); finally, β is the
parameter we abstract over, so it’s encoded with Par:

A11 = K (R O) Int
A12 = K U (φ α)
A21 = [] :◦: Rec S (D φ α)
A22 = Par

The entire representation consists of wrapping of appropriate meta-data around the rep-
resentation for constructor arguments:

RepD φ α β =
Data (MD "D" "Module" False)
(Bin (Leaf (Con (MC "D1" Prefix False)

(Bin (Leaf (Field (MF Nothing) A11))
(Leaf (Field (MF Nothing) A12)))))

(Leaf (Con (MC "D2" Prefix False)
(Bin (Leaf (Field (MF Nothing) A21))

(Leaf (Field (MF Nothing) A22))))))

2.2 Interpretation

The interpretation of the universe defines the structure of the values that inhabit the
datatype representation. Datatype representations will be types of kind Data. We use a
data family (Schrijvers et al. 2008) J K to encode the interpretation of the universe of
structured:

data family J K :: κ → ?→ ?

Its first argument is written infix, and the second postfix. Its kind, κ → ?→ ?, is overly
general in κ; we will only instantiate κ to the types of the universe shown before, and
prevent further instantiation by not exporting the family J K (effectively making it a
closed data family). The second argument of J K, of kind ?, is the parameter of the
datatype which we abstract over.

The top-level inhabitant of a datatype representation is a constructor D1, which
serves only as a proxy to store the datatype metadata in its type:

8 José Pedro Magalhães and Andres Löh

data instance Jυ :: DataK ρ where
D1 :: Jα K ρ → JData ι α K ρ

Constructors, on the other hand, are part of a Tree structure, so they can be on the
left (L1) or right (R1) side of a branch, or be a leaf. As a leaf, they contain the meta-
information for the constructor that follows (C1):

data instance Jυ :: Tree ConK ρ where
C1 :: Jα K ρ → JLeaf (Con ι α)K ρ

L1 :: Jα K ρ → JBin α β K ρ

R1 :: Jβ K ρ → JBin α β K ρ

Constructor fields are similar, except that they might be empty (U1, as some con-
structors have no arguments), leaves contain fields (S1), and branches are inhabited by
the arguments of both sides (:×:):

data instance Jυ :: Tree Field K ρ where
U1 :: JEmptyK ρ

S1 :: Jα K ρ → JLeaf (Field ι α)K ρ

(:×:) :: Jα K ρ → Jβ K ρ → JBin α β K ρ

We’re left with constructor arguments. We encode base types with K, datatype oc-
currences with Rec, the parameter with Par, and composition with Comp:

data instance Jυ :: ArgK ρ where
K ::{unK1 :: α } → JK ι α K ρ

Rec ::{unRec :: φ ρ } → JRec ι φ K ρ

Par ::{unPar :: ρ } → JPar K ρ

Comp ::{unComp :: σ (Jφ K ρ)}→ Jσ :◦: φ K ρ

2.3 Conversion to and from user datatypes

Having seen the generic universe and its interpretation, we need to provide a mechanism
to mediate between user datatypes and our generic representation. We use a type class
for this purpose:

class Generic (α ::?) where
Rep α :: Data
ThePar α :: ?
ThePar α = NoPar
from :: α → JRep φ K (ThePar α)
to :: JRep φ K (ThePar α)→ α

data NoPar -- empty

In the Generic class, the type family Rep encodes the generic representation associated
with user datatype α , and ThePar extracts the last parameter from the datatype. In case

Hierarchy in Generic Programming Libraries 9

the datatype is of kind ?, we use NoPar; a type family default allows us to leave the
type instance empty for types of kind ?. The conversion functions from and to perform
the conversion between the user datatype values and the interpretation of its generic
representation.

2.4 Example datatype encodings

We now show two complete examples of how user datatypes are encoded in struc-
tured. Naturally, users should never have to define these manually; a release version of
structured would be incorporated in the compiler, allowing automatic derivation of
Generic instances.

Choice The first datatype we encode represents a choice between four options:

data Choice = A | B | C | D

Choice is a datatype of kind ?, so we do not need to provide a type instance for ThePar.
The encoding, albeit verbose, is straightforward:

instance Generic Choice where
Rep Choice =

Data (MD "Choice" "Module" False)
(Bin (Bin (Leaf (Con (MC "A" Prefix False) Empty))

(Leaf (Con (MC "B" Prefix False) Empty)))
(Bin (Leaf (Con (MC "C" Prefix False) Empty))

(Leaf (Con (MC "D" Prefix False) Empty))))
from A = D1 (L1 (L1 (C1 U1)))
from B = D1 (L1 (R1 (C1 U1)))
from C = D1 (R1 (L1 (C1 U1)))
from D = D1 (R1 (R1 (C1 U1)))

to (D1 (L1 (L1 (C1 U1)))) = A
. . .

We use a balanced tree structure for the constructors; in Section 3 we will see how this
can be changed without any user effort.

Lists Standard Haskell lists are a type of kind ?→ ?. We break down its type rep-
resentation into smaller fragments using type synonyms, to ease comprehension. The
encoding of the metadata of each constructor and the two arguments to (:) follows:

MCNil = MC "[]" Prefix False
MCCons = MC ":" (Infix RightAssociative 5) False
H = Leaf (Field (MF Nothing) Par)
T = Leaf (Field (MF Nothing) (Rec S []))

10 José Pedro Magalhães and Andres Löh

The encoding of the first argument to (:), H, states that there is no record selector, and
that the argument is the parameter Par. The encoding of the second argument, T , is a
recursive occurrence of the same datatype being defined (Rec S []).

With these synonyms in place, we can show the complete Generic instance for lists:

instance Generic [α] where
Rep [α] = Data (MD "[]" "Prelude" False)

(Bin (Leaf (Con MCNil Empty))
(Leaf (Con MCCons (Bin H T))))

ThePar [α] = α

from [] = D1 (L1 (C1 U1))
from (h : t) = D1 (R1 (C1 (S1 (Par h) :×: S1 (Rec t))))
to (D1 (L1 (C1 U1))) = []
to (D1 (R1 (C1 (S1 (Par h) :×: S1 (Rec t))))) = h : t

The type function ThePar extracts the parameter α from [α]; the from and to conversion
functions are unsurprising.

3 Left- and right-biased encodings

The structured library uses trees to store the constructors inside a datatype, as well
as the fields inside a constructor. So far we have kept these trees balanced, but other
choices would be acceptable too. In fact, the balancing choice determines a generic view
(Holdermans et al. 2006). Different balancings might be more convenient for certain
generic functions. For example, if we are defining a binary encoding function, it is
convenient to use the balanced encoding, as then we can easily minimise the number
of bits used to encode a constructor. On the other hand, if we are defining a generic
function that extracts the first argument to a constructor (if it exists), we would prefer
using a right-nested view, as then we can simply pick the first argument on the left.
Fortunately, we do not have to provide multiple representations to support this; we
can automatically convert between different balancings. As an example, we see in this
section how to convert from the (default) balanced encoding to a right-nested one.

This is the first conversion shown in this paper, and as such serves as an introduc-
tion to our conversions. Following the style of Magalhães and Löh (2014), we use a
type family to adapt the representation, and a type-class to adapt the values. Since this
conversion works at the top of the hierarchy (on structured), the new balancing per-
sists in future conversions, so a generic function in generic-deriving could make use
of a right-biased encoding.

3.1 Type conversion

The essential part of the type conversion is a type function that performs one rotation to
the right on a tree:

RotR (α :: Tree κ) :: Tree κ

RotR (Bin (Bin α β) γ) = Bin α (Bin β γ)
RotR (Bin (Leaf α) γ) = Bin (Leaf α) γ

Hierarchy in Generic Programming Libraries 11

We then apply this rotation repeatedly at the top level until the tree contains a Leaf on
the left subtree, and then proceed to rotate the right subtree:

S→SRd (α :: Data) :: Data
S→SRd (Data ι α) = Data ι (S→SRcs α)

S→SRcs (α :: Tree Con) :: Tree Con
S→SRcs Empty = Empty
S→SRcs (Leaf (Con ι γ)) = Leaf (Con ι (S→SRfs γ))
S→SRcs (Bin (Bin α β) γ) = S→SRcs (RotR (Bin (Bin α β) γ))
S→SRcs (Bin (Leaf α) γ) = Bin (S→SRcs (Leaf α)) (S→SRcs γ)

S→SRfs (α :: Tree Field) :: Tree Field
S→SRfs Empty = Empty
S→SRfs (Leaf γ) = Leaf γ

S→SRfs (Bin (Bin α β) γ) = S→SRfs (RotR (Bin (Bin α β) γ))
S→SRfs (Bin (Leaf α) γ) = Bin (Leaf α) (S→SRfs γ)

The conversion for constructors (S→SRcs) and selectors (S→SRfs) differs only in the
treatment for leaves, as the leaf of a selector is the stopping point of this transformation.

3.2 Value conversion

The value-level conversion is witnessed by a type class:

class ConvertS→SR (α :: Data) where
s→rs :: Jα K ρ → JS→SRd α K ρ

s←rs :: JS→SRd α K ρ → Jα K ρ

We skip the definition of the instances, as they are mostly unsurprising and can be found
in our code bundle.

3.3 Example

To test the conversion, we define a generic function that computes the depth of the
encoding of a constructor:

class CountSumsr α where
countSumsr :: Jα K ρ → Int

instance (CountSumsr α)⇒ CountSumsr (Data ι α) where
countSumsr (D1 x) = countSumsr x

instance CountSumsr Empty where countSumsr = 0
instance CountSumsr (Leaf α) where countSumsr = 0
instance (CountSumsr α,CountSumsr α)

⇒ CountSumsr (Bin α β :: Tree Con) where
countSumsr (L1 x) = 1+ countSumsr x
countSumsr (R1 x) = 1+ countSumsr x

12 José Pedro Magalhães and Andres Löh

We now have two ways of calling this function; one using the standard encoding, and
other using the right-nested encoding obtained using ConvertS→SR:

countSumsBal :: (Generic α,CountSumsr (Rep α))⇒ α → Int
countSumsBal = countSumsr ◦ from
countSumsR :: (Generic α,ConvertS→SR (Rep α)

,CountSumsr (S→SRd (Rep α)))⇒ α → Int
countSumsR = countSumsr ◦ s→rs◦ from

Applying these two functions to the constructors of the Choice datatype should give
different results:

testCountSums :: ([Int], [Int])
testCountSums = (map countSumsBal [A,B,C,D]

,map countSumsR [A,B,C,D])

Indeed, testCountSums evaluates to ([2,2,2,2], [1,2,3,3]) as expected. As we’ve seen,
not only can we obtain a different balancing without having to duplicate the representa-
tion, but we can also effortlessly apply the same generic function to differently-balanced
encodings. Furthermore, the conversions shown in the coming sections automatically
“inherit” the balancing chosen in structured, allowing us to provide representations
with different balancings to the other GP libraries as well.

4 From structured to generic-deriving

In this section we show how to obtain generic-deriving representations from struc-
tured.

4.1 Encoding generic-deriving

The first step is to define generic-deriving. We could use its definition as imple-
mented in the GHC.Generics module, but it seems more appropriate to at least make
use of proper kinds. We thus redefine generic-deriving in this paper to bring it up
to date with the most recent compiler functionality.3 This is not essential for our con-
versions, and should be seen only as a small improvement. The type representation is
similar to a collapsed version of structured, where all types inhabit a single kind UnD:

kind UnD = VD
| UD
| ParD
| KD KType ?
| RecD RecType (?→ ?)

3 Along the lines of its proposed kind-polymorphic overhaul described in http:
//hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving#
Kindpolymorphicoverhaul.

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving#Kindpolymorphicoverhaul
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving#Kindpolymorphicoverhaul
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving#Kindpolymorphicoverhaul

Hierarchy in Generic Programming Libraries 13

| MD MetaD UnD
| UnD :+:D UnD
| UnD :×:D UnD
| (?→ ?) :◦:D UnD

kind MetaD = DD MetaData | CD MetaCon | FD MetaField

Since many names are the same as those in structured, we use the “D” subscript for
generic-deriving names. VD, UD, ParD, KD, RecD, and (:◦:D) behave very much like
the structured Empty, Leaf , Par, K, Rec, and (:◦:), respectively. The binary operators
(:+:D) and (:×:D) are equivalent to Bin, and MD encompasses structured’s Data,
Con, and Field.

Having seen the interpretation of structured, the interpretation of the gener-
ic-deriving universe is unsurprising:

data Jα :: UnD KD (ρ ::?) ::? where
U1D :: JUD KD ρ

M1D :: Jα KD ρ → JMD ι α KD ρ

Par1D :: ρ → JParD KD ρ

K1D :: α → JKD ι α KD ρ

Rec1D :: φ ρ → JRecD ι φ KD ρ

Comp1D :: φ (Jα KD ρ)→ Jφ :◦:D α KD ρ

L1D :: Jφ KD ρ → Jφ :+:D ψ KD ρ

R1D :: Jψ KD ρ → Jφ :+:D ψ KD ρ

:×:D :: Jφ KD ρ → Jψ KD ρ → Jφ :×:D ψ KD ρ

The significant difference from structured is the relative lack of structure. The types
(and kinds) do not prevent an L1D from showing up under a :×:D, for example.

User datatypes are converted to the generic representation using two type classes:

class GenericD (α ::?) where
RepD α :: UnD
TheParD α ::?
TheParD = NoPar
fromD :: α → JRepD α KD (TheParD α)
toD :: JRepD α KD (TheParD α)→ α

class Generic1D (φ ::?→ ?) where
Rep1D φ :: UnD

from1D :: φ ρ → JRep1D φ KD ρ

to1D :: JRep1D φ KD ρ → φ ρ

Class GenericD is used for all supported datatypes, and encodes a simple view on the
constructor arguments. For datatypes that abstract over (at least) one type parameter, an
instance for Generic1D is also required. The type representation in this instance encodes
the more general view of constructor arguments (i.e. using ParD, RecD, and :◦:D). Note
that GenericD doesn’t currently have TheParD in GHC, but we think this is a (minor)

14 José Pedro Magalhães and Andres Löh

improvement. Furthermore, the presence of a type family default makes it backwards-
compatible.

Since these two classes represent essentially two different universes in gener-
ic-deriving, we need to define two distinct conversions from structured to gener-
ic-deriving.

4.2 To GenericD

The universe of structured has a detailed encoding of constructor arguments. How-
ever, many generic functions do not need such detailed information, and are simpler to
write by giving a single case for constructor arguments (imagine, for example, a func-
tion that counts the number of arguments). For this purpose, generic-deriving states
that representations from GenericD contain only the KD type at the arguments (so no
ParD, RecD, and :◦:D).

To derive GenericD instances from Generic, we use the following instance:

instance (Generic α,ConvertS→D0 (Rep α))⇒ GenericD α where
RepD α = S→G0 (Rep α) (ThePar α)
TheParD α = ThePar α

fromD = s→g0 ◦ from
toD = to◦ s←g0

In the remainder of this section, we explain the definition of S→G0, a type family that
converts a representation of structured into one of generic-deriving, and the class
ConvertS→D0 , whose methods s→g0 and s←g0 perform the value-level conversion.

Type representation conversion To convert between the type representations, we use
a type family:

S→G0 (α :: κ) (ρ ::?) :: UnD

The kind of S→G0 is overly polymorphic; its input is not any κ , but only the kinds
that make up the structured universe. We could encode this by using multiple type
families, one at each “level”. For simplicity, however, we use a single type family, which
we instantiate only for the structured representation types.

The encoding of datatype meta-information is left unchanged:

S→G0 (Data ι α) ρ = MD (DD ι) (S→G0 α ρ)

We then proceed with the conversion of the constructors:

S→G0 Empty ρ = VD
S→G0 (Leaf (Con ι α)) ρ = MD (CD ι) (S→G0 α ρ)
S→G0 (Bin α β) ρ = (S→G0 α ρ) :+:D (S→G0 β ρ)

Again, the structure of the constructors and their meta-information is left unchanged.
We proceed similarly for constructor fields:

Hierarchy in Generic Programming Libraries 15

S→G0 Empty ρ = UD
S→G0 (Leaf (Field ι α)) ρ = MD (FD ι) (S→G0 α ρ)
S→G0 (Bin α β) ρ = (S→G0 α ρ) :×:D (S→G0 β ρ)

Finally, we arrive at individual fields, where the interesting part of the conversion
takes place:

S→G0 (K ι α) ρ = KD ι α

S→G0 (Rec ι φ) ρ = KD (R ι) (φ ρ)
S→G0 Par ρ = KD P ρ

Basically, all the information kept about the field is condensed into the first argument
of KD. Composition requires special care, but gets similarly collapsed into a KD:

S→G0 (φ :◦: α) ρ = KD U (φ (S→G0comp α ρ))

S→G0comp (α :: Arg) (ρ ::?) ::?
S→G0comp Par ρ = ρ

S→G0comp (K α) ρ = α

S→G0comp (Rec ι φ) ρ = φ ρ

S→G0comp (φ :◦: α) ρ = φ (S→G0comp α ρ)

The auxiliary type family S→G0comp takes care of unwrapping the composition, and re-
applying the type to its arguments.

Value conversion Having performed the type-level conversion, we have to convert the
values in an equally type-directed fashion. We begin with datatypes:

class ConvertS→D0 (α :: κ) where
s→g0 :: Jα K ρ → JS→G0 α ρ K ρ

s←g0 :: JS→G0 α ρ K ρ → Jα K ρ

instance (ConvertS→D0 α)⇒ ConvertS→D0 (Data ι α) where
s→g0 (D1 x) = M1D (s→g0 x)
s←g0 (D1 x) = M1D (s←g0 x)

As in the type conversion, we simply traverse the representation, and convert the con-
structors with another function. From here on, we omit the s←g0 direction, as it is
entirely symmetrical.

Constructors and selectors simply traverse the meta-information:

instance (ConvertS→D0 α)⇒ ConvertS→D0 (Leaf (Con ι α)) where
s→g0 (C1 x) = M1D (s→g0 x)

instance (ConvertS→D0 α,ConvertS→D0 β)⇒ ConvertS→D0 (Bin α β) where
s→g0 (L1 x) = L1D (s→g0 x)
s→g0 (R1 x) = R1D (s→g0 x)

instance ConvertS→D0 Empty where

16 José Pedro Magalhães and Andres Löh

s→g0 U1 = U1D

instance (ConvertS→D0 α)⇒ ConvertS→D0 (Leaf (Field ι α)) where
s→g0 (S1 x) = M1D (s→g0 x)

instance (ConvertS→D0 α,ConvertS→D0 β)⇒ ConvertS→D0 (Bin α β) where
s→g0 (x :×: y) = s→g0 x :×:D s→g0 y

Finally, at the argument level, we collapse everything into K1D:

instance ConvertS→D0 (K ι α) where s→g0 (K x) = K1D x
instance ConvertS→D0 (Rec ι φ) where s→g0 (Rec x) = K1D x
instance ConvertS→D0 Par where s→g0 (Par x) = K1D x
instance (Functor φ ,Convertcomp α)⇒ ConvertS→D0 (φ :◦: α) where

s→g0 (Comp x) = K1D (g→g0comp x)

Again, for composition we need to unwrap the representation, removing all representa-
tion types within:

class Convertcomp (α :: Arg) where
g→g0comp :: Functor φ ⇒ φ (Jα K ρ)→ φ (S→G0comp α ρ)

instance Convertcomp Par where g→g0comp = fmap unPar
instance Convertcomp (K ι α) where g→g0comp = fmap unK1

instance Convertcomp (Rec ι φ) where g→g0comp = fmap unRec

instance (Functor φ ,Convertcomp α)⇒ Convertcomp (φ :◦: α) where
g→g0comp = fmap (g→g0comp ◦unComp)

With all these instances in place, the Generic α ⇒ GenericD α shown at the be-
ginning of this section takes care of converting to the simpler representation of gener-
ic-deriving without syntactic overhead. In particular, all generic functions defined
over the GenericD class, such as gshow and genum from the generic-deriving pack-
age, are now available to all types in structured, such as Choice and [α].

Example: length To test the conversion, we define a generic function in gener-
ic-deriving that computes the number of elements in a structure:

class GLengthr (α :: UnD) where
gLengthr :: Jα KD ρ → Int

We omit the instances of GLengthr as they are unsurprising: we traverse the represen-
tation until we reach the arguments, which are recursively counted and added.

While the GLengthr class works on the generic representation, a user-facing class
GLength takes care of handling user-defined datatypes. We define a generic default
which implements gLength generically:

class GLength (α ::?) where
gLength :: α → Int

Hierarchy in Generic Programming Libraries 17

default gLength :: (GenericD α,GLengthr (RepD α))⇒ α → Int
gLength = gLengthr ◦ fromD

Because of the generic default, instantiating GLength to datatypes with a GenericD
instance is very simple:

instance GLength [α]
instance GLength Choice

Recall, however, that in Section 2.4 we have given only Generic instances for Choice
and [α], not GenericD. However, due to the (Generic α,ConvertS→D0 (Rep α)) ⇒
GenericD α instance of the beginning of this section, Choice and [α] automatically
get a GenericD instance, which is being used here.

We can test that this function behaves as expected: gLength [0,1,2,3] returns 4, and
gLength D returns 0. And further: using our previous work (Magalhães and Löh 2014),
we also gain all the functionality from other libraries, such as syb traversals or a zipper,
for example.

4.3 To Generic1D

Converting to Generic1D is very similar, only that we preserve more structure. The
conversion is similarly performed by two components.

Type representation conversion We define a type family to perform the conversion of
the type representation:

S→G1 (α :: κ) :: UnD

The type instances for the datatype, constructors, and fields behave exactly like in
S→G0, so we skip straight to the constructor arguments, which are simple to handle
because they are in one-to-one correspondence:

S→G1 (K ι α) = KD ι α

S→G1 (Rec ι α) = RecD ι α

S→G1 Par = ParD
S→G1 (φ :◦: α) = φ :◦:D S→G1 α

Value conversion The value-level conversion is as trivial as the type-level conversion,
so we omit it from the paper. It is witnessed by a poly-kinded type class:

class ConvertS→D1 (α :: κ) where
s→g1 :: Jα K ρ → JS→G1 α KD ρ

Again, we only give instances of ConvertS→D1 for the representation types of struc-
tured.

18 José Pedro Magalhães and Andres Löh

Using this class we can give instances for each user datatype that we want to con-
vert. For example, the list datatype (instantiated in structured in Section 2.4) can be
transported to generic-deriving with the following instance:

instance Generic1D [] where
Rep1D [] = S→G1 (Rep [NoPar])
from1D x = s→g1 (from x)

We use Rep [NoPar] because we need to instantiate the list with some parameter. Any
parameter will do, because we know that ∀φ α β .Rep (φ α) ∼ Rep (φ β). However,
this means that, unlike in Section 4.2, we cannot give a single instance of the form
Generic (φ ρ)⇒Generic1D φ . The reason for this is the disparity between the kinds of
the two classes involved; Generic1D only mentions the parameter ρ in the signature of
its methods, where it’s impossible to state that said ρ is the same as in the instance head
(Generic (φ ρ)).

This is not a major issue, however, because Generic1D instances are currently de-
rived by the compiler. If these instances were to be replaced by conversions from
Generic, the behaviour of deriving Generic1D would change to mean “derive Generic,
and define a trivial Generic1D instance”.

With the instance above, functionality defined in the generic-deriving package
over the Generic1D class, such as gmap, is now available to [α].

5 Conclusion

Following the lines of generic generic programming, we’ve shown how to add an-
other level of hierarchy to the current landscape of GP libraries in Haskell. Introducing
structured allows us to unify the two generic views in generic-deriving, and brings
the possibility of using different nestings in the constructor and constructor arguments
encoding. These developments can help in simplifying the implementation of GP in
the compiler, as less code has to be part of the compiler itself (only that for generating
structured instances), and more code can be moved into the user domain. GP library
writers also see their life simplified, by gaining access to multiple generic views without
needing to duplicate code.

Should structured turn out to be not informative enough to cover a particular
approach, then it can always be refined or extended. Since we do not advocate to use
structured directly, this means that only the direct conversions from structured have
to be extended, and everything else will just keep working. Our hierarchical approach
facilitates a future where GP libraries themselves are as modular and duplication-free
as the code they enable end users to write.

Acknowledgements

The first author is funded by EPSRC grant number EP/J010995/1. We thank the anony-
mous reviewers for the helpful feedback.

Hierarchy in Generic Programming Libraries 19

Bibliography

Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Rodriguez Yakushev.
Generic views on data types. In Proceedings of the 8th International Conference on
Mathematics of Program Construction, volume 4014 of Lecture Notes in Computer
Science, pages 209–234. Springer, 2006. doi:10.1007/11783596 14.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. In Proceedings of the 2003 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, pages 26–37. ACM,
2003. doi:10.1145/604174.604179.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection, zips,
and generalised casts. In Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 244–255. ACM, 2004.
doi:10.1145/1016850.1016883.

José Pedro Magalhães. Less Is More: Generic Programming Theory and Practice. PhD
thesis, Universiteit Utrecht, 2012.

José Pedro Magalhães. Generic programming with multiple parameters. In Michael
Codish and Eijiro Sumii, editors, Functional and Logic Programming, volume 8475
of Lecture Notes in Computer Science, pages 136–151. Springer International Pub-
lishing, 2014. doi:10.1007/978-3-319-07151-0 9.

José Pedro Magalhães and Andres Löh. A formal comparison of approaches to
datatype-generic programming. In James Chapman and Paul Blain Levy, editors,
Proceedings Fourth Workshop on Mathematically Structured Functional Program-
ming, volume 76 of Electronic Proceedings in Theoretical Computer Science, pages
50–67. Open Publishing Association, 2012. doi:10.4204/EPTCS.76.6.

José Pedro Magalhães and Andres Löh. Generic generic programming. In Matthew
Flatt and Hai-Feng Guo, editors, Practical Aspects of Declarative Languages, vol-
ume 8324 of Lecture Notes in Computer Science, pages 216–231. Springer Interna-
tional Publishing, 2014. doi:10.1007/978-3-319-04132-2 15.

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A generic de-
riving mechanism for Haskell. In Proceedings of the 3rd ACM Haskell Symposium,
pages 37–48. ACM, 2010. doi:10.1145/1863523.1863529.

Peter Morris. Constructing Universes for Generic Programming. PhD thesis, The
University of Nottingham, November 2007.

Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans, Johan Jeuring,
and Bastiaan Heeren. A lightweight approach to datatype-generic rewriting. In Pro-
ceedings of the ACM SIGPLAN Workshop on Generic Programming, pages 13–24.
ACM, 2008. doi:10.1145/1411318.1411321.

Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan Jeuring.
Generic programming with fixed points for mutually recursive datatypes. In Pro-
ceedings of the 14th ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 233–244. ACM, 2009. doi:10.1145/1596550.1596585.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin Sulzmann. Type
checking with open type functions. In Proceedings of the 13th ACM SIGPLAN
International Conference on Functional Programming, pages 51–62. ACM, 2008.
doi:10.1145/1411204.1411215.

http://dx.doi.org/10.1007/11783596_14
http://dx.doi.org/10.1145/604174.604179
http://dx.doi.org/10.1145/1016850.1016883
http://dx.doi.org/10.1007/978-3-319-07151-0_9
http://dx.doi.org/10.4204/EPTCS.76.6
http://dx.doi.org/10.1007/978-3-319-04132-2_15
http://dx.doi.org/10.1145/1863523.1863529
http://dx.doi.org/10.1145/1411318.1411321
http://dx.doi.org/10.1145/1596550.1596585
http://dx.doi.org/10.1145/1411204.1411215

20 José Pedro Magalhães and Andres Löh

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios Vytiniotis. Com-
plete and decidable type inference for GADTs. In Proceedings of the 14th ACM SIG-
PLAN International Conference on Functional Programming, pages 341–352. ACM,
2009. doi:10.1145/1596550.1596599.

Tim Sheard and Simon Peyton Jones. Template meta-programming for Haskell. In
Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, volume 37, pages
1–16. ACM, December 2002. doi:10.1145/581690.581691.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vy-
tiniotis, and José Pedro Magalhães. Giving Haskell a promotion. In Proceedings of
the 8th ACM SIGPLAN Workshop on Types in Language Design and Implementation,
pages 53–66. ACM, 2012. doi:10.1145/2103786.2103795.

http://dx.doi.org/10.1145/1596550.1596599
http://dx.doi.org/10.1145/581690.581691
http://dx.doi.org/10.1145/2103786.2103795

	Hierarchy in Generic Programming Libraries

