
Generics as a Library

Bruno C. d. S. Oliveira1, Ralf Hinze2, and Andres L̈oh2

1 Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK

bruno@comlab.ox.ac.uk
2 Institut für Informatik III, Universiẗat Bonn

Römerstraße 164, 53117 Bonn, Germany
{ralf,loeh }@informatik.uni-bonn.de

Abstract

A generic functionis a function that is defined on the structure of data types: with
a single definition, we obtain a function that works for many data types. In con-
trast, anad-hoc polymorphicfunction requires a separate implementation for each
data type. Previous work by Hinze onlightweight generic programminghas intro-
duced techniques that allow the definition of generic functions directly in Haskell.
A severe drawback of these approaches is that generic functions, once defined, can-
not be extended with ad-hoc behaviour for new data types, precluding the design of
a customizable generic programming library based on these techniques. In this pa-
per, we present a revised version of Hinze’sGenerics for the massesapproach that
overcomes this limitation. Using our new technique, writing a customizable generic
programming library in Haskell 98 is possible.

1 INTRODUCTION

A generic, or polytypic, function is a function that is defined over the structure of
types: with a single definition, we obtain a function that works for many data types.
Standard examples include the functions that can be derived in Haskell [1], such as
show, read, and ‘= =’, but there are many more.

By contrast, anad-hoc polymorphicfunction [2] requires a separate implemen-
tation for each data type. In Haskell, we implement ad-hoc polymorphic functions
using type classes. Here is an example, a binary encoder:

classEncode twhere
encode:: t→ [Bit]

instanceEncode Charwhere
encode= encodeChar

instanceEncode Intwhere
encode= encodeInt

instanceEncode a⇒ Encode[a] where
encode[] = [0]
encode(x :xs) = 1 :(encode x++encode xs)

newtypeEncode a= Encode{encode′ :: a→ [Bit]}
instanceGeneric Encodewhere

unit = Encode(const[])
char = Encode encodeChar
int = Encode encodeInt
plus a b = Encode(λx→ casex of Inl l → 0 :encode′ a l

Inr r → 1 :encode′ b r)
prod a b = Encode(λ(x×y)→ encode′ a x++encode′ b y)
view iso a= Encode(λx→ encode′ a (from iso x))

FIGURE 1. A generic binary encoder

This function works on all data types built from integers, characters and lists. We
assume that primitive bit encoders for integers and characters are provided from
somewhere. Lists are encoded by replacing an occurrence of[] with the bit0, and
occurrences of(:) with the bit1 followed by the encoding of the head element and
the encoding of the remaining list.

The functionencodecan be extended at any time to work on additional data
types. All we have to do is write another instance of theEncodeclass. However,
each time we add a new data type and we want to encode values of that data type,
we need to supply a specific implementation of encode for it.

In “Generics for the Masses” (GM) [3] a particularly lightweight approach to
generic programming is presented. Using the techniques described in that paper
we can write generic functions directly in Haskell 98. This contrasts with other
approaches to generic programming, which usually require significant compiler
support or language extensions.

In Figure 1, we present a generic binary encoder implemented using the GM
technique. We will describe the technical details, such as the shape of classGeneric,
in Section 2. Let us, for now, focus on the comparison with the ad-hoc polymor-
phic function given above. The different methods of classGenericdefine different
cases of the generic function. For characters and integers, we assume again stan-
dard definitions. But the case for lists is now subsumed by three generic cases for
unit, sum and product types. By viewing all data types in a uniform way, these
three cases are sufficient to call the encoder on lists, tuples, trees, and several more
complex data structures – a new instance declaration is not required.

However, there are situations in which a specific case for a specific data type
– called anad-hoc case– is desirable. For example, lists can be encoded more
efficiently than shown above: instead of encoding each constructor, we can encode
the length of the list followed by encodings of the elements. Or consider a repre-
sentation of sets as balanced trees. The same set can be represented by multiple
trees, so a generic equality function must not compare sets structurally, therefore

we need an ad-hoc case for set representations.
Defining ad-hoc cases for ad-hoc polymorphic functions is trivial. For the

generic version of the binary encoder, the addition of a new case is, however, very
difficult. Each case is a method of classGeneric, and adding a new case later re-
quires the modification of the class. We say that generic functions written in this
style are notextensible, and that the GM approach is notmodular, because non-
extensibility precludes writing a generic programming library. Generic functions
are more concise, but ad-hoc polymorphic functions are more flexible.

While previous foundational work [4, 5, 6, 7] provides a very strong basis for
generic programming, most of it only considered non-extensible generic functions.
It was realized by many authors [8, 3, 9] that this was a severe limitation.

This paper makes the following contributions:

• We give an encoding of extensible generic functions directly within Haskell 98
that is modular, overcoming the limitations of GM while retaining its advan-
tages.

• We show that by using already implemented language extensions, the nota-
tional overhead can be significantly reduced further.

• We relate our solution to the expression problem [10].

The rest of the paper is structured as follows. In Section 2 we repeat the fun-
damentals of the GM approach, and demonstrate why extensibility is not easy to
achieve. In Section 3, we give a new encoding of generic functions in Haskell 98
that is based on GMand that is modular. In Section 4 we look at the problem
of pretty printing values generically and show how we can code a modular pretty
printer with our encoding. A disadvantage of this encoding is that it requires the
programmer to write a relatively large amount of boilerplate code per generic func-
tion. In Section 5 we therefore show how we can employ some widely used and
implemented extensions of the Haskell language to reduce the workload on the
programmer significantly. Finally, in Section 6, we relate our technique to the
expression problem and discuss other related work.

2 GENERICS FOR THE MASSES

In this section we will summarise the key points of the GM approach.

2.1 A class for generic functions

In the GM approach to generic programming, each generic function is an instance
of the classGeneric:

classGeneric gwhere
unit :: g1
char :: g Char

int :: g Int
plus :: g a→ g b→ g (a+b)
prod :: g a→ g b→ g (a×b)
constr :: Name→ Arity→ g a→ g a
constr = id
view :: Iso b a→ g a→ g b

Our generic binary encoder in Figure 1 is one such instance. The idea of
Genericis thatg represents the type of the generic function and each method of the
type class represents a case of the generic function. The first three methods are for
the unit, sum and product types that are defined as follows:

data1 = 1
data a+b = Inl a | Inr b

data a×b = a×b

The types of the class methods follow the kinds of the data types [6]: for parame-
terized types such as+ or×, the function takes additional arguments that capture
the recursive calls of the generic function on the parameters of the data type.

If our generic functions require information about the constructors (such as
the name and arity), we can optionally provide a definition for the functionconstr.
Otherwise, we can just use the default implementation, which just ignores the extra
information.

We can define cases for primitive typesCharandInt by providing, respectively,
the functionschar andint.

Finally, theview function allows us to use generic functions on many Haskell
data types, given an isomorphism between the data type and its structural represen-
tation. Here is an example of the isomorphism for the data type of lists:

data Iso a b= Iso{from:: a→ b, to:: b→ a}
isoList:: Iso [a] (1+(a× [a]))
isoList= Iso fromList toList

fromList:: [a]→ 1+(a× [a])
fromList[] = Inl 1
fromList(x : xs) = Inr (x×xs)
toList::1+(a× [a])→ [a]
toList (Inl 1) = []
toList (Inr (x×xs)) = x :xs

In order to use generic functions on a data type, the programmer must define such
an isomorphism once. Afterwards, all generic functions can be used on the data
type by means of theviewcase. This is a huge improvement over ad-hoc polymor-
phic functions, which have to be extended one by one to work on an additional data
type.

classRep awhere
rep:: (Generic g)⇒ g a

instanceRep1 where
rep= unit

instanceRep Charwhere
rep= char

instanceRep Intwhere
rep= int

instance(Rep a,Rep b)⇒ Rep(a+b) where
rep= plus rep rep

instance(Rep a,Rep b)⇒ Rep(a×b) where
rep= prod rep rep

instanceRep a⇒ Rep[a] where
rep= rList rep

FIGURE 2. A generic dispatcher

2.2 Using generic functions

In order to call a generic function such asencode′, we have to provide a suitable
value of typeEncode. We can use the type classRep, shown in Figure 2, to infer
this so-calledrepresentationautomatically for us. We call such a type class adis-
patcher, because it selects the correct case of a generic function depending on the
type context in which it is used. Note that the dispatcher works for anyg that is an
instance ofGenericand therefore it only needs to be defined once for all generic
functions. With the help of the classRep, we can defineencodeas follows:

encode:: Rep t⇒ t→ [Bit]
encode= encode′ rep

Here, the type representation is implicitly passed via the type class. The function
encodecan be used with the same convenience as any ad-hoc overloaded function,
but it is truly generic. In order to extend the function with new type cases we need
to create a representation for that type. For example,

rList :: Generic g⇒ g a→ g [a]
rList a = view isoList(unit ‘plus‘ (a ‘prod‘ rList a))

is the representation for lists. The embedding intoGeneric is via view and the
previously defined isomorphism on lists.

In the following section, we will show why the GM approach is not modular,
and present a way to overcome this problem.

3 EXTENSIBLE GENERIC FUNCTIONS

This section consists of two parts: in the first part, we demonstrate how the non-
extensibility of GM functions leads to non-modularity. In the second part, we show
how to overcome this limitation.

3.1 The modularity problem

Suppose that we want to encode lists, and that we want to use a different encod-
ing of lists than the one derived generically: a list can be encoded by encoding
its length, followed by the encodings of all the list elements. For long lists, this
encoding is more efficient than to separate any two subsequent elements of the lists
and to mark the end of the list.

The classGenericis the base class of all generic functions, and its methods are
limited. If we want to design a generic programming library, it is mandatory that
we constrain ourselves to a limited set of frequently used types. Still, we can add
an extra case by introducing subclasses:

classGeneric g⇒GenericList gwhere
list ::g a→ g [a]
list = rList

By default, list is just rList. However, becauselist is a default method of a type
class, it can be overridden in the instances. For example, here is how to define the
more efficient encoding for lists:

instanceGenericList Encodewhere
list a = Encode(λx→ encodeInt(length x)++

concatMap(encode′ a) x)

Our extension breaks down, however, when we try to adapt the dispatcher: the
methodrep has typeGeneric g⇒ g a, and we cannot easily replace the context
Genericwith something more specific.

Consequently, generic functions in the GM approach are not extensible. This
rules out modularity: all cases that can appear in a generic function must be turned
into methods of classGeneric, and as we have already argued, this is impossible:
it may be necessary to add specific behaviour on user-defined or abstract types that
are simply not known to the library writer.

3.2 Ad-hoc dispatchers

The problem with the GM approach is that the generic dispatcher is actually too
general, and forces a specific dispatching behaviour on all generic functions. The
solution to this problem is simple, yet intriguing: in order to make a generic func-
tion extensible, we specializeRepto the generic function in question. Figure 3

classREncode twhere
encode:: t→ [Bit]

instanceREncode1 where
encode= encode′ unit

instanceREncode Intwhere
encode= encode′ int

instanceREncode Charwhere
encode= encode′ char

instance(REncode a,REncode b)⇒ REncode(a+b) where
encode= encode′ (plus repEncode repEncode)

instance(REncode a,REncode b)⇒ REncode(a×b) where
encode= encode′ (prod repEncode repEncode)

FIGURE 3. An ad-hoc dispatcher for binary encoders

shows what we obtain by specializingRepto the binary encoder. In the instances,
we useencode′ to extract the value from thenewtypeand redirect the call to the
appropriate case inGeneric. The functionrepEncode, which plays the role ofrep,
is defined as:

repEncode::REncode a⇒ Encode a
repEncode= Encode encode

It is now trivial to extend the dispatcher to new types. Consider once more the
ad-hoc case for encoding lists, defined by providing aninstancedeclaration for
GenericList Encode. The corresponding dispatcher extension is performed as fol-
lows:

instanceREncode a⇒ REncode[a] where
encode= encode′ (list repEncode)

Let us summarize. By specializing dispatchers to specific generic functions,
we obtain an encoding of generic functions in Haskell that is equally expressive
as the GM approach and shares the advantage that the code is pure Haskell 98.
Additionally, generic functions with specialized dispatchers are extensible: we can
place the type classGenerictogether with functions such asencodein a library that
is easy to use and extend by programmers.

4 EXAMPLE: AN EXTENSIBLE GENERIC PRETTY PRINTER

In this section we show how to define aextensible generic pretty printer. This
example is based on the non-modular version presented in GM (originally based
on Wadler’s work [11]).

newtypePretty a= Pretty{pretty′ :: a→ Doc}
instanceGeneric Prettywhere

unit = Pretty(const empty)
char = Pretty(prettyChar)
int = Pretty(prettyInt)
plus a b = Pretty(λx→ casex of Inl l → pretty′ a l

Inr r → pretty′ b r)
prod a b = Pretty(λ(x×y)→ pretty′ a x¦ line¦pretty′ b y)
view iso a = Pretty(pretty′ a◦ from iso)
constr n ar a = Pretty(prettyConstr n ar a)

prettyConstr n ar a x= let s= text nin
if ar = = 0 then s
elsegroup(nest1 (text"(" ¦s¦ line¦pretty′ a x¦ text")"))

FIGURE 4. A generic prettier printer

4.1 A generic pretty printer

In Figure 4 we present an instance ofGenericthat encodes a generic pretty printer.
The pretty printer is defined using Wadler’s pretty printing combinators. These
combinators generate a value ofDoc that can be rendered into a string afterwards.
For the structural cases, theunit function just returns an empty document;plus
decomposes the sum and pretty prints the value; for products, we pretty print the
first and second components separated by a line. For base typeschar and int we
assume existing pretty printersprettyCharandprettyInt. Theview case just uses
the isomorphism to convert between the user defined type and its structural repre-
sentation. Finally, since pretty printers require extra constructor information, the
functionconstrcallsprettyConstr, which pretty prints constructors.

Suppose that we add a new data typeTreefor representing labelled binary trees.
Furthermore, the nodes have an auxiliary integer value that can be used to track the
maximum depth of the subtrees.

data Tree a= Empty| Fork Int (Tree a) a (Tree a)

Now, we want to use our generic functions withTree. As we have explained before,
what we need to do is to add a subclass ofGenericwith a case for the new data
type and provide a suitableview.

classGeneric g⇒GenericTree gwhere
tree::g a→ g (Tree a)
tree a= view isoTree(constr"Empty" 0 unit ‘plus‘

constr"Fork" 4 (int ‘prod‘ (rTree a‘prod‘
(a ‘prod‘ rTree a))))

(We omit the boilerplate definition ofisoTree). Providing a pretty printer forTree
amounts to declaring an empty instance ofGenericTree– that is, using the default
definition fortree.

instanceGenericTree Pretty

We demonstrate the use of the pretty printer by showing the outcome of a con-
sole session:

Main〉 let t = Fork 1 (Fork 0 Empty’h’ Empty) ’i’ (Fork 0 Empty’!’ Empty)
Main〉 render80(pretty′ (tree char) t)
(Fork 1 (Fork 0 Empty’h’ Empty) ’i’ (Fork 0 Empty’!’ Empty))
Main〉 let i = Fork 1 (Fork 0 Empty104Empty) 105(Fork 0 Empty33Empty)
Main〉 render80(pretty′ (tree(Pretty(λx→ text[Char.chr x]))) i)
(Fork 1 (Fork 0 Empty h Empty) i (Fork 0 Empty! Empty))

The functionrender takes the number of columns available for rendering and
given a document it pretty prints it. The first use ofrender creates a document
using pretty′ and, by using the generic functionality provided bytree and char,
pretty prints the treet. More interestingly, the second example shows that if we
have aTree Int, when we override the generic behaviour for theInt parameter,
the function that is used to pretty print the auxiliary values ofInt is still the one
provided byint and not the one used by the integer parameters.

Whenever, the extra flexibility provided by the possibility of overriding the
generic behaviour is not required (like in the first use ofrender) we can provide a
dispatcher such as the one presented in Figure 5 and just use the convenientpretty
function.

Main〉 render80(pretty t)
(Fork 1 (Fork 0 Empty’h’ Empty) ’i’ (Fork 0 Empty’!’ Empty))

4.2 Showing lists

For user-defined types likeTree, our generic pretty printer can just reuse the generic
functionality and the results will be very similar to the ones we get if we just append
deriving Showto our data type definitions. However, this does not work for built-
in lists. The problem with lists is that they use a special mix-fix notation instead of
the usual alphabetic and prefix constructors. Fortunately, we have seen in Section 3
that we can combine ad-hoc polymorphic functions with generic functions. We
shall do the same here: we define an instance ofGenericList Prettybut, unlike
with GenericTree Pretty, we override the default definition.

instanceGenericList Prettywhere
list p = Pretty(λx→

casex of [] → text"[]"

classRPretty awhere
pretty :: a→ Doc
prettyList:: [a]→ Doc
prettyList= pretty′ (list repPretty)

instanceRPretty1 where
pretty = pretty′ repPretty

instanceRPretty Charwhere
pretty = pretty′ char
prettyList= prettyString

instanceRPretty Intwhere
pretty = pretty′ int

instance(RPretty a,RPretty b)⇒ RPretty(a+b) where
pretty = pretty′ (plus repPretty repPretty)

instance(RPretty a,RPretty b)⇒ RPretty(a×b) where
pretty = pretty′ (prod repPretty repPretty)

instanceRPretty a⇒ RPretty(Tree a) where
pretty = pretty′ (tree repPretty)

repPretty:: RPretty t⇒ Pretty t
repPretty= Pretty pretty

FIGURE 5. An ad-hoc dispatcher for pretty printers

(a: as)→ group(nest1 (text"[" ¦pretty′ p a¦ rest as)))
where rest[] = text"]"

rest(x : xs) = text"," ¦ line¦pretty′ p x¦ rest xs

Using this, we can extend the dispatcher in Figure 5 with an instance for lists that
uses Haskell’s standard notation.

instanceRPretty a⇒ RPretty[a] where
pretty= pretty′ (list repPretty)

Unfortunately, we are not done yet. In Haskell there is one more special nota-
tion involving lists: strings are just lists of characters, but we want to print them
using the conventional string notation. So, not only we need to treat lists in a spe-
cial manner, but we also need to handle lists of characters specially. This basically
means that we need to implement a nested case analysis on types. We anticipated
this possibility in Figure 5 and included a functionprettyList, which helps us tack-
ling that problem. The basic idea is thatprettyListbehaves as expected for all lists
except the ones with characters, where it usesprettyString. This is just like what
Haskelldoes in theShowclass. Now, modify ofRPretty[a] in order redirect the
call toprettyListand we are done.

instanceRPretty a⇒ RPretty[a] where
pretty= prettyList

In the pretty printer presented in GM supporting the list notation involved adding
an extra case toGeneric, which required us to have access to the source code where
Genericwas originally declared. In contrast, with our solution, the addition of a
special case for lists did not involve any change to our originalGenericclass or
even its instance forPretty.

The additional flexibility of our approach comes, however, at a price: using
ad-hoc dispatchers requires the programmer to write boilerplate code that is not
required for the original GM encoding. We now need to add one dispatcher for each
extensible generic function. This code is highly trivial; it is certainly preferable to
define an ad-hoc dispatcher than to define the function as an ad-hoc polymorphic
function, being forced to give an actual implementation for each data type. Yet, it
would be even better if we could somehow return to a single dispatcher that works
for all generic functions.

In the next section we will see an alternative encoding that avoids the duplica-
tion of dispatchers.

5 MAKING AD-HOC DISPATCHERS LESS AD-HOC

In this section we present another way to write extensible generic functions, which
requires only one generic dispatcher, just like the original GM approach. It relies,
however, on extensions to the class system, in particularundecidable instancesthat
are not standardized, but implemented in GHC and widely used.

Recall the discussion at the end of Section 3.1. There, we have shown that the
problem with GM’s dispatcher is that it fixes the context of methodrep to the class
Generic. Since we use subclasses ofGenericto add additional cases to generic
functions, the context ofrep must be flexible. We thus must abstract from the
specific type classGeneric. Haskell does not support abstraction over type classes,
but there is a trick that can be used to achieve the same effect. The technique
was first proposed by Hughes [12] and it has been used in Lämmel and Peyton
Jones [9]. The key idea is to use a type class

classOver twhere
over:: t

whereover is achieving something like object-oriented overloading. If we rep-
resent a type class such asREncodeby a dictionary type such asEncode, then a
constraint of the formOver(Encode a) plays a similar role as a constraint of the
form REncode a, only that we can abstract from the specific typeEncodein ques-
tion, with type variable instead. In Figure 6 we see how to use this idea to capture
all ad-hoc dispatchers in a single definition. The type constructorg represents the
“type class” that we want to abstract from. The structural cases1, + and× to-
gether with the base casesint andchar are all handled inGeneric, therefore we

instanceGeneric g⇒Over(g1) where
over= unit

instanceGeneric g⇒Over(g Int) where
over= int

instanceGeneric g⇒Over(g Char) where
over= char

instance(Generic g,Over(g a),Over(g b))⇒Over(g (a+b)) where
over= plus over over

instance(Generic g,Over(g a),Over(g b))⇒Over(g (a×b)) where
over= prod over over

instance(GenericList g,Over(g a))⇒Over(g [a]) where
over= list over

instance(GenericTree g,Over(g a))⇒Over(g (Tree a)) where
over= tree over

FIGURE 6. A less ad-hoc dispatcher.

requireg to be one instance ofGeneric. However, for[a] andTree athe argument
g must be, respectively, constrained byGenericListandGenericTreesince those
are the type classes that handle those types. The remaining constraints, of the form
Over(g a), contain the necessary information to perform the recursive calls. Now,
we can just use this dispatcher to obtain an extensibleencode:

encode:: Over(Encode t)⇒ t→ [Bit]
encode= encode′ over

Similarly, for pretty printers we can just use the same dispatcher, but this time
usingPretty instead ofEncode:

pretty::Over(Pretty t)⇒ t→ Doc
pretty= pretty′ over

This approach requires about the same amount of work from the programmer
as the original GM technique, but it is modular, and allows us to write a generic
programming library.

6 DISCUSSION AND RELATED WORK

In this section we summarize our main results; then we briefly relate our technique
to theexpression problem[10]; finally, we discuss some other closely related work.

In the original GM, it is shown how to encode generic functions in Haskell 98.
However functions defined with that encoding are not extensible: we can define

new generic functions easily, but adding new cases (or variants) would involve the
modification of existing code. With the two encodings that we introduce, generic
functions can be extended with new cases, while retaining the simplicity and ex-
pressiveness of the GM approach. One important aspect of the GM and our en-
coding is that dispatching generic functions is resolved statically: calling a generic
function on a case that is not defined for it is a compile-time error.

Based on the results of this paper, we are currently in the process of assembling
a library of frequently used generic functions. For the interested reader, the Haskell
source code for this paper can be found at:

http://web.comlab.ox.ac.uk/oucl/work/bruno.oliveira/Generics.tar.gz

6.1 Expression problem

Wadler [11] identified the need for extensibility in two dimensions (adding new
variantsand new functions) as a problem and called it the expression problem.
According to him, a solution for the problem should allow the definition of a data
type, the addition of new variants to such a data type as well as the addition of
new functions over that data type. A solution should not require recompilation of
existing code, and it should be statically type safe: applying a function to a variant
for which that function is not defined should result in a compile-time error. Our
solution accomplishes all of these for the particular case of generic functions. It
should be easy to generalize our technique in such a way that it can be applied to
other instances of the expression problem. For example, the work of Oliveira and
Gibbons [13], which generalizes the GM technique as a design pattern, could be
recast using the techniques of this paper.

Let us analyze the role of each type class of our solution in the context of the
expression problem. The classGenericplays the role of a data type definition and
declares the variants thatall functions should be defined for. The subclasses of
Genericrepresent extra variants that we add: not all functions need to be defined
for those variants, but if we want to use a function with one of those, then we need
to provide the respective case. The instances ofGenericand subclasses are the
bodies of our extensible functions. Finally, the dispatcher allows us to encode the
dispatching behaviour for the extensible functions: if we add a new variant and we
want to use it with our functions, we must add a new instance for that variant.

6.2 Other related work

Generic Haskell (GH) [7] is a tool that supports generic programming in a Haskell-
like language. The tool can generate Haskell code that can then be used with a
Haskell compiler. Like our approach, GH uses sums of products for viewing user
defined types. GH can generate the boilerplate code required for new data types
automatically. With our approach we need to manually provide this code. However,
our generic functions areextensible; at any point we can add an extra ad-hoc case

for some generic function. We believe this is of major importance since, as we have
been arguing, extensible functions are crucial for a modular generic programming
library. This is not the case for GH since all the special cases need to be defined
at once. Also, since GH is an external tool it is less convenient to use. With our
approach, all we have to do is to import the modules with the generic library.

“Derivable Type Classes” (DTCs) [8] is a proposed extension to Haskell that al-
lows us to write generic default cases for methods of a type class. In this approach,
data types are viewed as if constructed by binary sums and binary products, which
makes it a close relative of both our approach and GM. The main advantage of
DTCs is that it is trivial to add ad-hoc cases to generic functions, and the isomor-
phisms between data types and their structural representations (see Section 2.1)
are automatically generated by the compiler. However, the approach permits only
generic functions on types of kind?, and the DTC implementation lacks the ability
to access constructor information, precluding the definition of generic parsers or
pretty printers.

Lämmel and Peyton Jones [9] present another approach to generic program-
ming based on type classes. The idea is similar to DTCs in the sense that one
type class is defined for each generic function and that default methods are used
to provide the generic definition. Overriding the generic behaviour is as simple
as providing an instance with the ad-hoc definition. The approach shares DTC’s
limitation to generic functions on types of kind?. The difference to our approach
is that data types are not mapped to a common structure consisting of sums and
products. Instead, generic definitions make use of a small set of combinators. The
possibility to abstract over a type class is essential to their approach, whereas it is
optional, yet helpful, for ours.

Löh and Hinze [14] propose an extension to Haskell that allows the definition
of extensible data types and extensible functions. With the help of this extension,
it is also possible to define extensible generic functions, on types of any kind,
in Haskell. While their proposed language modification is relatively small, our
solution has the advantage of being usable right now. Furthermore, we can give
more safety guarantees: in our setting, a call to an undefined case of a generic
function is a static error; with open data types, it results in a pattern match failure.

Vytiniotis and others [15] present a language where it is possible to define
extensible generic functions on types of any kind, while guaranteeing static safety.
Therefore, it is not a novelty that we can define such flexible generic functions.
However, we believe it is the first time that a solution with all these features is
presented in Haskell, relying solely on implemented language constructs or even
solely on Haskell 98.

ACKNOWLEDGEMENTS

We would like to thank Jeremy Gibbons and Fermı́n Reig for valuable suggestions
and discussions about this work. This work was partially funded by theEPSRC

Datatype-Generic Programmingand theDFG “A generic functional programming
language”projects.

REFERENCES

[1] Peyton Jones, S., ed.: Haskell 98 Language and Libraries: The Revised Report.
Cambridge University Press (2003)

[2] Strachey, C.: Fundamental concepts in programming languages. Lecture Notes,
International Summer School in Computer Programming, Copenhagen (1967)
Reprinted inHigher-Order and Symbolic Computation, 13(1/2), pp. 1–49, 2000.

[3] Hinze, R.: Generics for the masses. In: International Conference on Functional
Programming, ACM Press (2004) 236–243

[4] Bird, R., de Moor, O., Hoogendijk, P.: Generic functional programming with types
and relations. Journal of Functional Programming6 (1996) 1–28

[5] Jansson, P.: Functional Polytypic Programming. PhD thesis, Chalmers University of
Technology (2000)

[6] Hinze, R.: Polytypic values possess polykinded types. In Backhouse, R., Oliveira,
J.N., eds.: Proceedings of the Fifth International Conference on Mathematics of Pro-
gram Construction, July 3–5, 2000. Volume 1837 of Lecture Notes in Computer Sci-
ence., Springer-Verlag (2000) 2–27

[7] Löh, A.: Exploring Generic Haskell. PhD thesis, Utrecht University (2004)

[8] Hinze, R., Peyton Jones, S.: Derivable type classes. In Hutton, G., ed.: Proceedings
of the 2000 ACM SIGPLAN Haskell Workshop. Volume 41.1 of Electronic Notes in
Theoretical Computer Science., Elsevier Science (2001) The preliminary proceedings
appeared as a University of Nottingham technical report.

[9] Lämmel, R., Peyton Jones, S.: Scrap your boilerplate with class: extensible generic
functions. In: Proceedings of the ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2005), ACM Press (2005) 204–215

[10] Wadler, P.: The expression problem. Java Genericity Mailing list (1998)

[11] Wadler, P.: A prettier printer. In Gibbons, J., de Moor, O., eds.: The Fun of Program-
ming, Palgrave Macmillan (2003) 223–244

[12] Hughes, J.: Restricted data types in Haskell. In Meijer, E., ed.: Proceedings of the
1999 Haskell Workshop. Number UU-CS-1999-28 (1999)

[13] Oliveira, B., Gibbons, J.: Typecase: A design pattern for type-indexed functions. In:
Haskell Workshop. (2005) 98–109

[14] Löh, A., Hinze, R.: Open data types and open functions. Technical Report IAI-TR-
2006-3, Institut f̈ur Informatik III, Universiẗat Bonn (2006)

[15] Vytiniotis, D., Washburn, G., Weirich, S.: An open and shut typecase. In: TLDI
’05: Proceedings of the 2005 ACM SIGPLAN international workshop on Types in
languages design and implementation, New York, NY, USA, ACM Press (2005) 13–
24

