
Generic Generic Programming

José Pedro Magalhães
Department of Computer Science, University of Oxford

jpm@cs.ox.ac.uk

Andres Löh
Well-Typed LLP

andres@well-typed.com

Abstract
Generic programming (GP) is a form of abstraction in program-
ming languages that serves to reduce code duplication by exploit-
ing the regular structure of algebraic datatypes. Over the years, sev-
eral different approaches to GP in Haskell have surfaced. These ap-
proaches are often very similar, but have minor variations that make
them particularly well-suited for one particular domain or applica-
tion. As such, there is a lot of code duplication across GP libraries,
which is rather unfortunate, given the original goals of GP.

To address this problem, we introduce yet another library for
GP in Haskell. . . from which we can automatically derive repre-
sentations for the most popular other GP libraries. Our work uni-
fies many approaches to GP, and simplifies the life of both library
writers and users. Library writers can define their approach as a
conversion from our library, obviating the need for writing meta-
programming code for generation of conversions to and from the
generic representation. Users of GP, who often struggle to find “the
right approach” to use, can now mix and match functionality from
different libraries with ease, and need not worry about having mul-
tiple (potentially inefficient and large) code blocks for generic rep-
resentations in different approaches.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

Keywords datatype-generic programming, Haskell, SYB

1. Introduction
The abundance of generic programming approaches is not a new
problem. Including pre-processors, template-based approaches,
language extensions, and libraries, there are well over 15 different
approaches to generic programming in Haskell (Magalhães 2012,
Chapter 8). This abundance is caused by the lack of a clearly su-
perior approach; each approach has its strengths and weaknesses,
uses different implementation mechanisms, a different generic view
(Holdermans et al. 2006) (i.e. a different structural representation
of datatypes), or focuses on solving a particular task. Their number
and variety makes comparisons difficult, and can make prospective
GP users struggle even before actually writing a generic program,
since first they have to choose a library that is appropriate for their
needs.

Some effort has been made in comparing different approaches
to GP from a practical point of view (Hinze et al. 2007; Ro-

[Copyright notice will appear here once ’preprint’ option is removed.]

driguez Yakushev et al. 2008), or to classify approaches (Hinze and
Löh 2009). We have previously investigated how to model and for-
mally relate some Haskell GP libraries using Agda (Magalhães and
Löh 2012), and concluded that some approaches clearly subsume
others. The relevance of this fact extends above mere theoretical
interest, since a comparison can also provide means for convert-
ing between approaches. Ironically, code duplication across generic
programming libraries is evident: the same function can be nearly
identical in different approaches, yet impossible to reuse, due to
the underlying differences in representation. A conversion between
approaches provides the means to remove duplication of generic
code.

In this paper we define a new GP library, structured, and use
it to derive representations for many other GP libraries. Defining
a new library does not mean introducing a lot of new supporting
code. In fact, we do not even think many generic functions will
ever be defined in our new library, as its representation is verbose
(albeit precise). Instead, we use it to guide our conversion efforts,
as a highly structured approach provides a good foundation to build
upon. From the compiler writer’s perspective, this library would be
the only one needing compiler support (e.g. through the deriving
mechanism); support for other libraries follows automatically from
conversions that are defined in plain Haskell, not through more
compiler extensions. Should we ever find that we need more in-
formation in structured to support converting to other libraries,
we can extend it without changing any of the other libraries.

We show how structured can handle multiple generic views
with minimal encoding repetition, and then define a conversion to
one of the standard modern GP libraries in Haskell, generic-de-
riving (Magalhães et al. 2010). From there we show conversions
to other popular generic libraries: regular (Van Noort et al. 2008),
multirec (Rodriguez Yakushev et al. 2009), and syb (Lämmel and
Peyton Jones 2003, 2004).1 Some of these libraries are remarkably
different from each other, yet advanced type-level features in the
Glasgow Haskell Compiler (GHC),2 such as GADTs (Schrijvers
et al. 2009), type functions (Schrijvers et al. 2008), and kind poly-
morphism (Yorgey et al. 2012), allow us to perform these conver-
sions.

Using the type class system, our conversions remain entirely un-
der the hood for the end user, who need not worry anymore about
which GP approach does what, and can simply use generic func-
tions from any approach. As an example, the following combina-
tion of generic functionality is now possible:

import Generics.Deriving
import Generics.Regular.Functions.Fold as R
import Generics.SYB.Schemes as S
import Data.Typeable

1 We also have a conversion to instant-generics (Chakravarty et al.
2009) which we omit from the paper as it offers no new insights.
2 http://www.haskell.org/ghc/

1 2013/3/29

http://www.haskell.org/ghc/

structured
Section 2

generic-deriving1
Section 4.3

generic-deriving0
Section 4.2

regular
Section 5

multirec
Section 6

syb
Section 7

Figure 1. Conversions between the approaches.

import Conversions ()
data Logic = Logic :∧: Logic | Logic :∨: Logic

| Not Logic | T | F
deriving (Generic,Typeable)

test :: (Bool, Int)
test = (R.fold alg term,S.gsize term)

where term = T :∨: F
alg = (∧)& (∨)& not & True & False

Here, the user defines a Logic datatype, and lets the compiler auto-
matically derive a Generic representation for it. The fold function,
from the regular library, and the gsize function, from syb, can
then be used on Logic values, simply by importing the conversion
instances defined in some module Conversions; there is no need to
derive any generic representations for regular or syb.3

Generic library writers also see an improvement in their quality
of life, as they no longer need to write Template Haskell (Sheard
and Peyton Jones 2002) code to derive representations for their li-
braries, and can instead rely on our conversion functions. Further-
more, many generic functions can now be recognised as truly du-
plicated across approaches, and can be deprecated appropriately.
Defining new approaches to GP has never been easier; GP libraries
can be kept small and specific, focusing on one particular aspect,
as users can easily find and use other generic functionality in other
approaches.

We say this work is about “generic generic programming” be-
cause it is generic over generic programming approaches. Specifi-
cally, our contributions are the following:

• A new library for GP, structured, which properly encodes the
nesting of the different structures within a datatype represen-
tation (Section 2). We propose this libary as a foundation for
GP in Haskell, from which many other approaches can be de-
rived. It is designed to be highly expressive and easily extensi-
ble, serving as a back-end for more stable and established GP
libraries.

• We show how structured can provide generic function writ-
ers with different views of the nesting of constructors and fields
(Section 3). Different generic functions prefer different balanc-
ings, which we provide through automatic conversion (instead
of duplicated encodings differing only in the balancing).

• We define conversions to multiple other GP libraries (Sections 4
to 7). We cover a wide range of approaches, including libraries

3 We also derive Typeable because syb requires it. Note that the Typeable
class only provides functionality related to runtime type comparison and
casting; it is not a GP library, so it is not included in our conversions.

with a fixed-point view on data (regular and multirec), and a
library based on traversal combinators (syb).

• In defining our conversions to other libraries, we update their
definitions to make use of the latest GHC extensions (namely
data kinds and kind polymorphism (Yorgey et al. 2012)). This
is not essential for our conversions (i.e. we are not changing
the libraries to make our conversion easier), but it improves the
libraries.4

Figure 1 shows a diagram with an overview of the conversions
defined in this paper.

1.1 Notation
In order to avoid syntactic clutter and to help the reader, we adopt a
liberal Haskell notation in this paper. We will assume the existence
of a kind keyword, which allows us to define kinds directly. These
kinds behave as if they had arisen from datatype promotion (Yorgey
et al. 2012), except that they do not define a datatype and construc-
tors. We will omit the keywords type family and type instance en-
tirely, making type-level functions look like their value-level coun-
terparts. We colour constructors in blue, types in red, and kinds in
green. In case the colours cannot be seen, the “level” of an expres-
sion is clear from the context. Additionally, we use Greek letters for
type variables, apart from κ , which is reserved for kind variables.

This syntactic sugar is only for presentation purposes. An ex-
ecutable version of the code, which compiles with GHC 7.6.2, is
available at http://dreixel.net/research/code/ggp.zip. We
rely on many GHC-specific extensions to Haskell, which are es-
sential for our development. Due to space constraints we cannot
explain them all in detail, but we try to point out relevant features
as we use them.

1.2 Structure of the paper
The remainder of this paper is structured as follows. We first intro-
duce the structured library for GP (Section 2). We then see how
how to obtain views with different balancings of the constructors
and constructor arguments (Section 3). Afterwards, we see how to
obtain many other libraries from structured; we start with ge-
neric-deriving (Section 4), one of the libraries currently bun-
dled with GHC. From generic-deriving we see how to obtain
regular (Section 5), multirec (Section 6), and syb (Section 7).
We then conclude with a discussion in Section 8. No previous
knowledge of any of the libraries is required, since we will un-
derstand them all in terms of structured. Along the way, we also

4 While these libraries were always “type correct”, our changes make them
“more kind correct” as well.

2 2013/3/29

http://dreixel.net/research/code/ggp.zip

show several examples of how our conversion enables seamless use
of multiple approaches.

2. A highly structured library
We begin our efforts of homogenising GP libraries by defining a
structured library intended to sit at the top of the hierarchy. Our
goal is to define a library that is highly expressive, even if not en-
tirely convenient to use. Users who require the level of detail given
by structured are free to use it directly, but we expect most users
to prefer using any of the other, already existing GP libraries. Us-
ability is not our main concern here; expressiveness is. Stability
is also not guaranteed; we might extend our library as needed to
support converting to more approaches. Previous approaches had
to find a careful balance between having too little information in
the generic representation, resulting in a library with poor expres-
siveness, and having too much information, resulting in a verbose
and hard to use approach. Given our modular approach, we are free
from these concerns.

This new approach is at the core of all other approaches, but
users (and even generic function writers) need not be aware of that.
In particular, if this library is supported by automatic deriving of
representations in the compiler, no more compiler support is re-
quired for the other libraries. Using this library also improves mod-
ularity; it can be updated or extended more freely, since supporting
the other libraries requires only updating the conversions, not the
compiler itself (for the automatic derivation of instances).

2.1 Universe
The structure used to encode datatypes in a GP programming
approach is called its universe (Morris 2007). The universe of
structured is similar to that of generic-deriving (Magalhães
2012, Chapter 11), as it supports abstraction over at most one
datatype parameter. We choose to restrict this parameter to be the
last of the datatype, and only if its kind is ?. This is a pragmatic
decision: many generic functions, such as map, require abstrac-
tion over one parameter, but comparatively few require abstraction
over more than one parameter. For example, in the type [α], the
parameter is α , and in Either α β , it is β . The differences to ge-
neric-deriving lay in the explicit hierarchy of data, constructor,
and field, and the absence of two separate ways of encoding con-
structor arguments. It might seem unsatisfactory that we do not
improve on the limitations on generic-deriving with regards to
datatype parameters, but that is secondary to our goal in this paper.
Furthermore, structured can easily be improved later, keeping
the other libraries unchanged, and adapting only the conversions if
necessary.

Datatypes are represented as types of kind Data. We define new
kinds, whose types are not inhabited by values: in Haskell, only
types of kind ? are inhabited by values. These kinds can be thought
of as datatypes, but its “constructors” will be used as indices of a
GADT (Schrijvers et al. 2009) to construct values with a specific
structure.

Datatypes have some metadata, such as their name, and contain
constructors. Constructors have their own metadata, and contain
fields. Finally, each field can have metadata, and contain a value of
some structure:

kind Data = Data MetaData (Tree Con)
kind Con = Con MetaCon (Tree Field)
kind Field = Field MetaField Arg
kind Tree κ = Empty | Leaf κ | Bin (Tree κ) (Tree κ)

We use a binary leaf tree to encode the structure of the constructors
in a datatype, and the fields in a constructor. Typically lists are
used, but we will see in Section 3 that it is convenient to encode

the structure as a tree, as we can change the way it is balanced for
good effect.

The metadata we store is unsurprising:

kind MetaData = MD Symbol -- datatype name
Symbol -- datatype module name
Bool -- is it a newtype?

kind MetaCon = MC Symbol -- constructor name
Fixity -- constructor fixity
Bool -- does it use record syntax?

kind MetaField = MF (Maybe Symbol) -- field name
kind Fixity = Prefix | Infix Associativity Nat
kind Associativity = LeftAssociative

| RightAssociative
| NotAssociative

kind Nat = Ze | Su Nat
kind Symbol -- internal

It is important to note that this metadata is encoded at the type level.
In particular, we have type-level strings and natural numbers. We
make use of the current (in GHC 7.6.2) implementation of type-
level strings, whose kind is Symbol.

Finally, Arg describes the structure of constructor arguments:

kind Arg = K KType ?
| Rec RecType (?→ ?)
| Par
| (?→ ?) :◦: Arg

kind KType = P | R | U
kind RecType = S | O

A field can either be a datatype parameter other than the last (K P),
an occurrence of a different datatype of kind ? (K R), some other
type (such as an application of type variable, encoded with K U), a
datatype of kind (at least) ?→ ? (Rec), which can be either the same
type we’re encoding (S) or a different one (O), the (last) parame-
ter of the datatype (Par), or a composition of a type constructor
with another argument (:◦:). The annotations given by KType and
RecType will prove essential when converting to approaches with
a fixed-point view on data (Section 5 and Section 6), as there we
need explicit knowledge about the recursive structure of data.

The representation is best understood in terms of an example.
Consider the following datatype:

data D φ α β = D1 Int (φ α) | D2 [D φ α β] β

We first show the encoding of each of the four constructor argu-
ments: Int is a datatype of kind ?, so it’s encoded with K (R O) Int;
φ α depends on the instantiation of φ , so it’s encoded with
K U (φ α); [D φ α β] is a composition between the list func-
tor and the datatype we’re defining, so it’s encoded with [] :◦:
Rec S (D φ α); finally, β is the parameter we abstract over, so it’s
encoded with Par:

A11 = K (R O) Int
A12 = K U (φ α)
A21 = [] :◦: Rec S (D φ α)
A22 = Par

The entire representation consists of wrapping of appropriate meta-
data around the representation for constructor arguments:

RepD φ α β =
Data (MD "D" "Module" False)

(Bin (Leaf (Con (MC "D1" Prefix False)
(Bin (Leaf (Field (MF Nothing) A11))

(Leaf (Field (MF Nothing) A12)))))

3 2013/3/29

(Leaf (Con (MC "D2" Prefix False)
(Bin (Leaf (Field (MF Nothing) A21))

(Leaf (Field (MF Nothing) A22))))))

2.2 Interpretation
The interpretation of the universe defines the structure of the val-
ues that inhabit the datatype representation. Datatype representa-
tions will be types of kind Data. We use a data family (Schri-
jvers et al. 2008) J K to encode the interpretation of the universe
of structured:

data family J K :: κ → ?→ ?

Its kind, κ→ ?→ ?, is overly general in κ; we will only instantiate
κ to the types of the universe shown before, and prevent further
instantiation by not exporting the family J K (effectively making it
a closed data family). The second argument of J K, of kind ?, is the
parameter of the datatype which we abstract over.

The top-level inhabitant of a datatype representation is a con-
structor D1, which serves only as a proxy to store the datatype
metadata on its type:

data instance Jυ :: DataK ρ where
D1 :: Jα K ρ → JData ι α K ρ

Constructors, on the other hand, are part of a Tree structure,
so they can be on the left (L1) or right (R1) side of a branch,
or be a leaf. As a leaf, they contain the meta-information for the
constructor that follows (C1):

data instance Jυ :: Tree ConK ρ where
C1 :: Jα K ρ → JLeaf (Con ι α)K ρ

L1 :: Jα K ρ → JBin α β K ρ

R1 :: Jβ K ρ → JBin α β K ρ

Constructor fields are similar, except that they might be empty
(U1, as some constructors have no arguments), leaves contain fields
(S1), and branches are inhabited by the arguments of both sides
(:×:):

data instance Jυ :: Tree Field K ρ where
U1 :: JEmptyK ρ

S1 :: Jα K ρ → JLeaf (Field ι α)K ρ

(:×:) :: Jα K ρ → Jβ K ρ → JBin α β K ρ

We’re left with constructor arguments. We encode base types
with K, datatype occurrences with Rec, the parameter with Par,
and composition with Comp:

data instance Jυ :: ArgK ρ where
K ::{unK1 :: α } → JK ι α K ρ

Rec ::{unRec :: φ ρ } → JRec ι φ K ρ

Par ::{unPar :: ρ } → JPar K ρ

Comp ::{unComp :: σ (Jφ K ρ)}→ Jσ :◦: φ K ρ

2.3 Conversion to and from user datatypes
Having seen the generic universe and its interpretation, we need to
provide a mechanism to mediate between user datatypes and our
generic representation. We use a type class for this purpose:

class Generic (α ::?) where
Rep α :: Data
Parg α :: ?
Parg α = NoPar
from :: α → JRep φ K (Parg α)
to :: JRep φ K (Parg α)→ α

data NoPar -- empty

In the Generic class, the type family Rep encodes the generic
representation associated with user datatype α , and Parg

5 extracts
the last parameter from the datatype. In case the datatype is of
kind ?, we use NoPar; a type family default allows us to leave the
type instance empty for types of kind ?. The conversion functions
from and to perform the conversion between the user datatype
values and the interpretation of its generic representation.

2.4 Example datatype encodings
We now show two complete examples of how user datatypes are
encoded in structured. (Naturally, users should never have to
define these manually; a release version of structured would
be incorporate in the compiler, allowing automatic derivation of
Generic instances.)

2.4.1 Choice
The first datatype we encode represents a choice between four
options:

data Choice = A | B | C | D
Choice is a datatype of kind ?, so we do not need to provide a type
instance for Parg. The encoding, albeit verbose, is straightforward:

instance Generic Choice where
Rep Choice =

Data (MD "Choice" "Module" False)
(Bin (Bin (Leaf (Con (MC "A" Prefix False) Empty))

(Leaf (Con (MC "B" Prefix False) Empty)))
(Bin (Leaf (Con (MC "C" Prefix False) Empty))

(Leaf (Con (MC "D" Prefix False) Empty))))
from A = D1 (L1 (L1 (C1 U1)))
from B = D1 (L1 (R1 (C1 U1)))
from C = D1 (R1 (L1 (C1 U1)))
from D = D1 (R1 (R1 (C1 U1)))

to (D1 (L1 (L1 (C1 U1)))) = A
. . .

We use a balanced tree structure for the constructors; in Section 3
we will see how this can be changed without any user effort.

2.4.2 Lists
Standard Haskell lists are a type of kind ?→ ?. We break down its
type representation into smaller fragments using type synonyms,
to ease comprehension. The encoding of the metadata of each
constructor and the two arguments to (:) follows:

MCNil = MC "[]" Prefix False
MCCons = MC ":" (Infix RightAssociative 5) False
H = Leaf (Field (MF Nothing) Par)
T = Leaf (Field (MF Nothing) (Rec S []))

The encoding of the first argument to (:), H, states that there is no
record selector, and that the argument is the parameter Par. The
encoding of the second argument, T , is a recursive occurrence of
the same datatype being defined (Rec S []).

With these synonyms in place, we can show the complete
Generic instance for lists:

instance Generic [α] where
Rep [α] = Data (MD "[]" "Prelude" False)

(Bin (Leaf (Con MCNil Empty))
(Leaf (Con MCCons (Bin H T))))

Parg [α] = α

from [] = D1 (L1 (C1 U1))

5 The subscript g is only to distinguish Parg from the universe type Par.

4 2013/3/29

from (h : t) = D1 (R1 (C1 (S1 (Par h) :×: S1 (Rec t))))
to (D1 (L1 (C1 U1))) = []
to (D1 (R1 (C1 (S1 (Par h) :×: S1 (Rec t))))) = h : t

The type function Parg extracts the parameter α from [α]; the from
and to conversion functions are unsurprising.

3. Left- and right-biased encodings
The structured library uses trees to store the constructors inside
a datatype, as well as the fields inside a constructor. So far we have
kept these trees balanced, but other choices would be acceptable
too. In fact, the balancing choice determines a generic view (Hol-
dermans et al. 2006). Different balancings might be more conve-
nient for certain generic functions. For example, if we are defining
a binary encoding function, it is convenient to use the balanced en-
coding, as then we can easily minimise the number of bits used
to encode a constructor. On the other hand, if we are defining a
generic function that extracts the first argument to a constructor (if
it exists), we would prefer using a right-nested view, as then we can
simply pick the first argument on the left. Fortunately, we do not
have to provide multiple representations to support this; we can au-
tomatically convert between different balancings. As an example,
we see in this section how to convert from the (default) balanced
encoding to a right-nested one. We use a type family to adapt the
representation, and a type-class to adapt the values.

3.1 Type conversion
The essential part of the type conversion is a type function that
performs one rotation to the right on a tree:

RotR (α :: Tree κ) :: Tree κ

RotR (Bin (Bin α β) γ) = Bin α (Bin β γ)
RotR (Bin (Leaf α) γ) = Bin (Leaf α) γ

We then apply this rotation repeatedly at the top level until the tree
contains a Leaf on the left subtree, and then proceed to rotate the
right subtree:

S→SRd (α :: Data) :: Data
S→SRd (Data ι α) = Data ι (S→SRcs α)

S→SRcs (α :: Tree Con) :: Tree Con
S→SRcs Empty = Empty
S→SRcs (Leaf (Con ι γ)) = Leaf (Con ι (S→SRfs γ))
S→SRcs (Bin (Bin α β) γ) = S→SRcs (RotR (Bin (Bin α β) γ))
S→SRcs (Bin (Leaf α) γ) = Bin (S→SRcs (Leaf α)) (S→SRcs γ)

S→SRfs (α :: Tree Field) :: Tree Field
S→SRfs Empty = Empty
S→SRfs (Leaf γ) = Leaf γ

S→SRfs (Bin (Bin α β) γ) = S→SRfs (RotR (Bin (Bin α β) γ))
S→SRfs (Bin (Leaf α) γ) = Bin (Leaf α) (S→SRfs γ)

The conversion for constructors (S→SRcs) and selectors (S→SRfs)
differs only in the treatment for leaves, as the leaf of a selector is
the stopping point of this transformation.

3.2 Value conversion
The value-level conversion is witnessed by a type class:

class ConvertS→SR (α :: Data) where
s→rs :: Jα K ρ → JS→SRd α K ρ

s←rs :: JS→SRd α K ρ → Jα K ρ

We skip the definition of the instances, as they are mostly unsur-
prising and can be found in our code bundle.

3.3 Example
To test the conversion, we define a generic function that computes
the depth of the encoding of a constructor:

class CountSumsr α where
countSumsr :: Jα K ρ → Int

instance (CountSumsr α)⇒ CountSumsr (Data ι α) where
countSumsr (D1 x) = countSumsr x

instance CountSumsr Empty where countSumsr = 0
instance CountSumsr (Leaf α) where countSumsr = 0
instance (CountSumsr α,CountSumsr α)

⇒ CountSumsr (Bin α β :: Tree Con) where
countSumsr (L1 x) = 1+ countSumsr x
countSumsr (R1 x) = 1+ countSumsr x

We now have two ways of calling this function; one using the stan-
dard encoding, and other using the right-nested encoding obtained
using ConvertS→SR:

countSumsBal :: (Generic α,CountSumsr (Rep α))⇒ α → Int
countSumsBal = countSumsr ◦ from
countSumsR :: (Generic α,ConvertS→SR (Rep α)

,CountSumsr (S→SRd (Rep α)))⇒ α → Int
countSumsR = countSumsr ◦ s→rs◦ from

Applying these two functions to the constructors of the Choice
datatype should give different results:

testCountSums :: ([Int], [Int])
testCountSums = (map countSumsBal [A,B,C,D]

,map countSumsR [A,B,C,D])

Indeed, testCountSums evaluates to ([2,2,2,2], [1,2,3,3]) as ex-
pected. As we’ve seen, not only can we obtain a different balancing
without having to duplicate the representation, but we can also ef-
fortlessly apply the same generic function to differently-balanced
encodings. Furthermore, the conversions shown in the coming sec-
tions automatically “inherit” the balancing chosen in structured,
allowing us to provide representations with different balancings to
the other GP libraries as well.

4. From structured to generic-deriving

So far we have only seen a conversion within the structured
approach. In this section we show how to obtain generic-deriv-
ing representations from structured.

4.1 Encoding generic-deriving

The first step is to define generic-deriving. We could use its def-
inition as implemented in the GHC.Generics module, but it seems
more appropriate to at least make use of proper kinds. We thus re-
define generic-deriving in this paper to bring it up to date with
the most recent compiler functionality.6 The type representation is
similar to a collapsed version of structured, where all types in-
habit a single kind UnD:

kind UnD = VD | UD | ParD
| KD KType ?
| RecD RecType (?→ ?)
| MD MetaD UnD
| UnD :+:D UnD
| UnD :×:D UnD
| (?→ ?) :◦:D UnD

6 Along the lines of its proposed kind-polymorphic overhaul described
in http://hackage.haskell.org/trac/ghc/wiki/Commentary/
Compiler/GenericDeriving#Kindpolymorphicoverhaul.

5 2013/3/29

http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving#Kindpolymorphicoverhaul
http://hackage.haskell.org/trac/ghc/wiki/Commentary/Compiler/GenericDeriving#Kindpolymorphicoverhaul

kind MetaD = DD MetaData | CD MetaCon | FD MetaField

Since many names are the same as those in structured, we use the
“D” subscript for generic-deriving names. VD, UD, ParD, KD,
RecD, and (:◦:D) behave very much like the structured Empty,
Leaf , Par, K, Rec, and (:◦:), respectively. The binary operators
(:+:D) and (:×:D) are equivalent to Bin, and MD encompasses
structured’s Data, Con, and Field.

Having seen the interpretation of structured, the interpreta-
tion of the generic-deriving universe is unsurprising:

data Jα :: UnD KD (ρ ::?) ::? where
U1D :: JUD KD ρ

M1D :: Jα KD ρ → JMD ι α KD ρ

Par1D :: ρ → JParD KD ρ

K1D :: α → JKD ι α KD ρ

Rec1D :: φ ρ → JRecD ι φ KD ρ

Comp1D :: φ (Jα KD ρ)→ Jφ :◦:D α KD ρ

L1D :: Jφ KD ρ → Jφ :+:D ψ KD ρ

R1D :: Jψ KD ρ → Jφ :+:D ψ KD ρ

:×:D :: Jφ KD ρ → Jψ KD ρ → Jφ :×:D ψ KD ρ

The significant difference from structured is the lack of structure.
The types (and kinds) do not prevent an L1D from showing up under
a :×:D, for example. It is clear that structured contains more
information than generic-deriving, so the conversion should be
simple.

User datatypes are converted to the generic representation using
two type classes:

class GenericD (α ::?) where
RepD α :: UnD
ParD α ::?
ParD = NoPar
fromD :: α → JRepD α KD (ParD α)
toD :: JRepD α KD (ParD α)→ α

class Generic1D (φ ::?) where
Rep1D φ :: UnD

from1D :: φ ρ → JRep1D φ KD ρ

to1D :: JRep1D φ KD ρ → φ ρ

Class GenericD is used for all supported datatypes, and encodes a
simple view on the constructor arguments. For datatypes that ab-
stract over (at least) one type parameter, an instance for Generic1D
is also required. The type representation in this instance encodes
the more general view of constructor arguments (i.e. using ParD,
RecD, and :◦:D). Note that GenericD doesn’t currently have ParD in
GHC, but we think this is a (minor) improvement. Furthermore, the
presence of a type family default makes it backwards-compatible.

Since these two classes represent essentially two different uni-
verses in generic-deriving, we need to define two distinct con-
versions from structured to generic-deriving.

4.2 To GenericD

The universe of structured has a detailed encoding of constructor
arguments. However, many generic functions do not need such
detailed information, and are simpler to write by giving a single
case for constructor arguments (imagine, for example, a function
that counts the number of arguments). For this purpose, gener-
ic-deriving states that representations from GenericD contain
only the KD type at the arguments (so no ParD, RecD, and :◦:D).

To derive GenericD instances from Generic, we use the follow-
ing instance:

instance (Generic α,ConvertS→D0 (Rep α))
⇒ GenericD α where

Rep0 α = S→G0 (Rep α) (Parg α)
Par0 α = Parg α

from0 = s→g0 ◦ from
to0 = to◦ s←g0

In the remainder of this section, we explain the definition of S→G0,
a type family that converts a representation of structured into one
of generic-deriving, and the class ConvertS→D0 , whose methods
s→g0 and s←g0 perform the value-level conversion.

4.2.1 Type representation conversion
To convert between the type representations, we use a type family:

S→G0 (α :: κ) (ρ ::?) :: UnD

The kind of S→G0 is overly polymorphic; its input is not any κ , but
only the kinds that make up the structured universe. We could
encode this by using multiple type families, one at each “level”.
For simplicity, however, we use a single type family, which we
instantiate only for the structured representation types.

The encoding of datatype meta-information is left unchanged:

S→G0 (Data ι α) ρ = MD (DD ι) (S→G0 α ρ)

We then proceed with the conversion of the constructors:

S→G0 Empty ρ = VD
S→G0 (Leaf (Con ι α)) ρ = MD (CD ι) (S→G0 α ρ)
S→G0 (Bin α β) ρ = (S→G0 α ρ) :+:D (S→G0 β ρ)

Again, the structure of the constructors and their meta-information
is left unchanged. We proceed similarly for constructor fields:

S→G0 Empty ρ = UD
S→G0 (Leaf (Field ι α)) ρ = MD (FD ι) (S→G0 α ρ)
S→G0 (Bin α β) ρ = (S→G0 α ρ) :×:D (S→G0 β ρ)

Finally, we arrive at individual fields, where the interesting part
of the conversion takes place:

S→G0 (K ι α) ρ = KD ι α

S→G0 (Rec ι φ) ρ = KD (R ι) (φ ρ)
S→G0 Par ρ = KD P ρ

Basically, all the information kept about the field is condensed into
the first argument of KD. Composition requires special care, but
gets similarly collapsed into a KD:

S→G0 (φ :◦: α) ρ = KD U (φ (S→G0comp α ρ))

S→G0comp (α :: Arg) (ρ ::?) ::?
S→G0comp Par ρ = ρ

S→G0comp (K α) ρ = α

S→G0comp (Rec ι φ) ρ = φ ρ

S→G0comp (φ :◦: α) ρ = φ (S→G0comp α ρ)

Here, the auxiliary type family S→G0comp takes care of unwrapping
the composition, and re-applying the type to its arguments.

4.2.2 Value conversion
Having performed the type-level conversion, we have to convert the
values in an equally type-directed fashion. We start with datatypes:

class ConvertS→D0 (α :: κ) where
s→g0 :: Jα K ρ → JS→G0 α ρ K ρ

s←g0 :: JS→G0 α ρ K ρ → Jα K ρ

instance (ConvertS→D0 α)⇒ ConvertS→D0 (Data ι α) where
s→g0 (D1 x) = M1D (s→g0 x)
s←g0 (D1 x) = M1D (s←g0 x)

6 2013/3/29

As in the type conversion, we simply traverse the representation,
and convert the constructors with another function. From here on,
we omit the s←g0 direction, as it is entirely symmetrical.

Constructors and selectors simply traverse the meta-information:

instance (ConvertS→D0 α)
⇒ ConvertS→D0 (Leaf (Con ι α)) where

s→g0 (C1 x) = M1D (s→g0 x)
instance (ConvertS→D0 α,ConvertS→D0 β)

⇒ ConvertS→D0 (Bin α β) where
s→g0 (L1 x) = L1D (s→g0 x)
s→g0 (R1 x) = R1D (s→g0 x)

instance ConvertS→D0 Empty where s→g0 U1 = U1D

instance (ConvertS→D0 α)
⇒ ConvertS→D0 (Leaf (Field ι α)) where

s→g0 (S1 x) = M1D (s→g0 x)
instance (ConvertS→D0 α,ConvertS→D0 β)

⇒ ConvertS→D0 (Bin α β) where
s→g0 (x :×: y) = s→g0 x :×:D s→g0 y

Finally, at the argument level, we collapse everything into K1D:

instance ConvertS→D0 (K ι α) where s→g0 (K x) = K1D x
instance ConvertS→D0 (Rec ι φ) where s→g0 (Rec x) = K1D x
instance ConvertS→D0 Par where s→g0 (Par x) = K1D x
instance (Functor φ ,Convertcomp α)

⇒ ConvertS→D0 (φ :◦: α) where
s→g0 (Comp x) = K1D (g→g0comp x)

Again, for composition we need to unwrap the representation,
removing all representation types within:

class Convertcomp (α :: Arg) where
g→g0comp :: Functor φ ⇒ φ (Jα K ρ)→ φ (S→G0comp α ρ)

instance Convertcomp Par where g→g0comp = fmap unPar
instance Convertcomp (K ι α) where g→g0comp = fmap unK1
instance Convertcomp (Rec ι φ) where g→g0comp = fmap unRec

instance (Functor φ ,Convertcomp α)
⇒ Convertcomp (φ :◦: α) where

g→g0comp = fmap (g→g0comp ◦unComp)

With all these instances in place, the Generic α ⇒ GenericD α

shown at the beginning of this section takes care of converting to
the simpler representation of generic-deriving without syntac-
tic overhead. In particular, all generic functions defined over the
GenericD class, such as gshow and genum from the generic-de-
riving package, are now available to all types in structured, such
as Choice and [α].

4.3 To Generic1D

Similarly, the conversion to Generic1D has two components.

4.3.1 Type conversion
We define a type family to perform the conversion of the type
representation:

S→G1 (α :: κ) :: UnD

The type instances for the datatype, constructors, and fields behave
exactly like in S→G0, so we skip straight to the constructor argu-
ments, which are simple to handle because they are in one-to-one
correspondence:

S→G1 (K ι α) = KD ι α

S→G1 (Rec ι α) = RecD ι α

S→G1 Par = ParD
S→G1 (φ :◦: α) = φ :◦:D S→G1 α

4.3.2 Value conversion
The value-level conversion is as trivial as the type-level conversion,
so we omit it from the paper. It is witnessed by a poly-kinded type
class:

class ConvertS→D1 (α :: κ) where
s→g1 :: Jα K ρ → JS→G1 α KD ρ

Again, we only give instances of ConvertS→D1 for the representa-
tion types of structured.

Using this class we can give instances for each user datatype that
we want to convert. For example, the list datatype (instantiated in
structured in Section 2.4.2) can be transported to generic-de-
riving with the following instance:

instance Generic1D [] where
Rep1D [] = S→G1 (Rep [NoPar])
from1D x = s→g1 (from x)

We use Rep [NoPar] because we need to instantiate the list with
some parameter. Any parameter will do, because we know that
∀φ α β .Rep (φ α) ∼ Rep (φ β). However, this means that, unlike
in Section 4.2.2, we cannot give a single instance of the form
Generic (φ ρ)⇒ Generic1D φ . The reason for this is the disparity
between the kinds of the two classes involved; Generic1D only
mentions the parameter ρ in the signature of its methods, where
it’s impossible to state that said ρ is the same as in the instance
head (Generic (φ ρ)).

This is not a major issue, however, because Generic1D in-
stances are currently derived by the compiler. If these instances
were to be replaced by conversions from Generic, the behaviour of
deriving Generic1D would change to mean “derive Generic, and
define a trivial Generic1D instance”.

With the instance above, functionality defined in the gener-
ic-deriving package over the Generic1D class, such as gmap, is
now available to [α].

5. From generic-deriving to regular

The conversion of the previous section was rather trivial because
the two libraries involved are very similar. We now turn our atten-
tion to a conversion to a more unrelated approach, namely regular.
The regular library, first described in the context of generic rewrit-
ing (Van Noort et al. 2008), encodes datatypes using a “fixed-
point view”. As such, it abstracts over the recursive position of the
datatype, allowing for the definition of recursive morphisms such
as cata- and anamorphisms.

5.1 Encoding regular

We show a simplified encoding of the universe of regular (sub-
script “R”), omitting the constructor meta-information:

kind UnR = UR | IR | KR ? | UnR :+:R UnR | UnR :+:R UnR

As before, we have a type for encoding unitary constructors (UR)
and a type for constants (KR). However, we also have a type IR to
encode recursion. The regular library supports abstracting over
single recursive datatypes only, so IR need not store the index of
what type it encodes. Sums and products behave as in generic-de-
riving.

The interpretation of this universe is parametrised over the type
of recursive positions τ , which is used in the IR case:

data Jα :: UnR KR (τ ::?) where
UR :: JUR KR τ

7 2013/3/29

IR :: τ → J IR KR τ

KR :: α → JKR α KR τ

LR :: Jα KR τ → Jα :+:R β KR τ

RR :: Jβ KR τ → Jα :+:R β KR τ

(:×:R) :: Jα KR τ → Jβ KR τ → Jα :×:R β KR τ

The Regular class witnesses the conversion between user-
defined datatypes and their representation in regular. Note how
the τ parameter of Jα KR is set to α itself:

class Regular (α ::?) where
PF α :: UnR

fromR :: α → JPF α KR α

This means that regular encodes a one-layer generic representa-
tion, where the recursive positions are values of the original user
datatype, not generic representations.

5.2 Type conversion
We convert to regular from generic-deriving, as we do not
need the added complexity of structured. Naturally, structured
representations can be converted into regular by first converting
them to generic-deriving.

The conversion type family takes a generic-deriving repre-
sention and returns a regular representation:

D→R (α :: UnD) :: UnR

For units, meta-information, sums, and products, the conversion is
straightforward:

D→R UD = UR
D→R (MD ι α) = D→R α

D→R (α :+:D β) = D→R α :+:R D→R β

D→R (α :×:D β) = D→R α :×:R D→R β

The interesting case is that for constants, as we have to treat recur-
sion into the same datatype differently:

D→R (KD (R S) τ) = IR
D→R (KD (R O) α) = KR α

D→R (KD P α) = KR α

D→R (KD U α) = KR α

One might wonder what would happen if the generic-deriving
representation would have an inconsistent use of KD (R S) τ where
τ is not the type being represented. This would lead to a type error,
as we explain in the next section.

5.3 Value conversion
The conversion of the values is witnessed by the ConvertD→R type
class:

class ConvertD→R (α :: UnD) τ where
d→r :: Jα KD ρ → JD→R α KR τ

This is a multiparameter type class because we need to enforce the
restriction that the recursive occurrence under KD (R S) τ has to be
of the expected type τ:

instance ConvertD→R (KD (R S) τ) τ where
d→r (K1D x) = IR x

The tag R S expresses this restriction informally only; the formal
guarantee is given by the type-checker, since this instance requires
type equality, encoded in the repeated appearance of the variable τ

in the instance head. We omit the remaining instances as they are
unsurprising.

To finish the value conversion, we provide a Regular instance
for all GenericD types. It is here that we set the second parameter
of ConvertD→R to the type being converted (α):

instance (GenericD α,ConvertD→R (RepD α) α)
⇒ Regular α where

PF α = D→R (RepD α) α

fromR x = d→r (fromD x)

With this instance, functions defined in the regular library are now
available to all generic-deriving supported datatypes. This is
remarkable; in particular, functions that require a fixed-point view
on data, such as the generic catamorphism, can be used on gener-
ic-deriving types without having to provide an explicit Regular
instance. From the generic library developer point of view there are
other advantages. When defining a new generic function that fits
the fixed-point view naturally, a developer could implement this
function easily in regular, but would then require the users of this
function to use regular, and manually write Regular instances for
their datatypes, or use the provided Template Haskell code to derive
these automatically. Alternatively, the developer could try to define
the same function in generic-deriving, but this would probably
require more effort; the advantage would be that users wouldn’t
need an external library to use this function, and could rely solely
on GHC.

With the instance above, however, the developer can implement
the function in regular, and the users can use it through the
deriving GenericD extension of GHC. In fact, regular can be
simplified by removing the Template Haskell code for generating
Regular instances altogether. Given that this code often requires
updating due to new releases of GHC changing Template Haskell,
this is a clear improvement, and helps reduce clutter from the GP
libraries themselves.

6. From generic-deriving to multirec

Having seen how to convert from generic-deriving to a fixed-
point view for a single datatype, we are ready to tackle the chal-
lenge of converting to multirec, a library with a fixed-point view
over families of datatypes (Rodriguez Yakushev et al. 2009).

6.1 Encoding multirec

The universe of multirec is similar to that of regular, only IM is
parametrised over an index (since we now support recursion into
several datatypes), and we have a new code :.:M for tagging a part
of the representation with a concrete index:

data UnM κ = UM | IM κ | KM ? | UnM κ :.:M κ

| UnM κ :+:M UnM κ | UnM κ :×:M UnM κ

Tagging is used to differentiate between different datatypes within
a single representation. As an example, we show a family of two
mutually-recursive datatypes together with the type-level represen-
tation in multirec:

data Zig = Zig Zag | ZigEnd
data Zag = Zag Zig
ZigZagRep = ((IM Zag :+:M U) :.:M Zig)

:+:M ((IM Zig) :.:M Zag)

In this example, the index κ is ?. This is how the original multirec
library encodes indices (by using the datatype itself as an index),
and this turns out to be convenient for our conversion, so we will
always use UnM instantiated with kind ?.

The interpretation of the multirec universe is parametrised not
only by the representation type α , but also by a type constructor
τ that converts indices into their concrete representation, and a
particular index type ι :

data Jα :: UnM κ KM (τ :: κ → ?) (ι :: κ) where
UM :: JU KM τ ι

IM :: τ o→ J IM oKM τ ι

8 2013/3/29

KM :: α → JKM α KM τ ι

TagM :: Jα KM τ ι → Jα :.:M ι KM τ ι

LM :: Jα KM τ ι → Jα :+:M β KM τ ι

RM :: Jβ KM τ ι → Jα :+:M β KM τ ι

:×:M :: Jα KM τ ι → Jβ KM τ ι → Jα :×:M β K τ ι

In other words, the interpretation Jα KM τ ι can be seen as a family
of datatypes, one for each particular index ι . Note how the TagM
constructor introduces a type equality constraint on the tagged
index; this is how the interpretation is restricted to a particular
index.

Finally, user datatypes are converted to the multirec represen-
tation using two type classes, FamM and ElM :

newtype I0M α = I0M α

class FamM (φ ::?→ ?) where
PFM φ :: UnM ?

fromM :: φ ι → ι → JPFM φ KM I0M ι

class ElM (φ :: κ → ?) (ι :: κ) where
proofM :: φ ι

The class FamM takes as argument a family type φ . Here we in-
stantiate the τ in J KM to an identity type I0M ; other applications in
multirec, such as the generalised catamorphism, make use of the
generality of τ . The ElM class associates each index type ι with its
family φ .

This is all best understood through an example, so we show the
encoding for the family of datatypes Zig and Zag shown before. The
first step is to define a GADT to represent the family. This datatype
can contain elements of type Zig and Zag:

data ZigZag ι where
ZigZagZig :: ZigZag Zig
ZigZagZag :: ZigZag Zag

The type ZigZag now describes our family, by providing two in-
dices ZigZagZig and ZigZagZag. This is made concrete by the fol-
lowing instances:

instance FamM ZigZag where
PFM ZigZag = ZigZagRep
fromM ZigZagZig (Zig z) = LM (TagM (LM (IM (I0M z))))
fromM ZigZagZig ZigEnd = LM (TagM (RM UM))
fromM ZigZagZag (Zag z) = RM (TagM (IM (I0M z)))

instance ElM ZigZag Zig where proofM = ZigZagZig
instance ElM ZigZag Zag where proofM = ZigZagZag

6.2 Type conversion
The first step in converting a family of datatypes representable in
generic-deriving to multirec is to convert a single datatype.
This is the task of the D→M type family:

D→M (α :: UnD) :: UnM ?

D→M UD = UM
D→M (MD ι α) = D→M α

D→M (α :+:D β) = D→M α :+:M D→M β

D→M (α :×:D β) = D→M α :×:M D→M β

The most interesting case is that for constants, which we now need
either to turn into indices, or to keep as constants. We turn recursive
occurrences into indices, and leave the rest as constants:

D→M (KD (R ι) τ) = IM τ

D→M (KD U α) = KM α

D→M (KD P α) = KM α

Note that the tag on the KD type determines whether a particular
constructor argument becomes a family index or not. The R tag
in generic-deriving is used for occurrences of datatypes; this
means that a multirec family generated by our conversion will
include all such types as part of the family. This might sometimes
give rise to a family that is larger than desired; for instance, for
the datatype D of Section 2.1, the family is composed of both
D and Int. However, it is preferrable to have a larger family and
ignore some indices, than to have a smaller family which is missing
important indices. We take a conservative approach, and generate
large families, including base types such as Int.7

Having defined D→M to convert one datatype, we’re left with
the task of converting a family of datatypes. We encode a family
as a type-level list of datatypes, and define D→MFam parametrised
over such a list:

D→MFam (α :: [?]) :: UnM ?

D→MFam [] = KM ⊥
D→MFam (α : β) = (D→M (RepD α)) :.:M α)

:+:M D→MFam β

data⊥
We convert a list of datatypes by taking each element, looking up
its representation in generic-deriving using RepD, converting it
to a multirec representation using D→M, and tagging that with
the original datatype. The base case is the empty list, which we
encode with an empty representation (since multirec has no empty
representation type, we define an empty datatype ⊥ and use it as a
constant).

6.3 Value conversion
Converting a value of a single type is done in exactly the same way
as for the other conversions:

class ConvertD→M (α :: UnD) where
d→m :: Jα KD ρ → JD→M α KM I0M σ

As before, we omit the instances, as they are without surprises.
We’re left with dealing with the encapsulation of values within

a family. We represent families as lists of types, but a value of a
family is still of a single, concrete type. We use a GADT to encode
the notion of a value within a family:

data (:@:) (α :: [?]) (β ::?) where
This :: (α : β) :@: α

That :: β :@: α → (γ : β) :@: α

For example, This ZigEnd is a value of type [Zig,Zag] :@: Zig, and
That (This (Zag ZigEnd)) is a value of type [Zig,Zag] :@: Zag.

The application of :@: to a single element is of kind ?→ ?, and
it encodes precisely the notion of a multirec family. We make this
explicit by providing ElM instances stating that a type α is either at
the head of the list, and can be accessed with This, or it might be
deeper within the list, in which case we have to continue indexing
with That:

instance ElM ((:@:) (α : β)) α where
proofM = This

instance (ElM ((:@:) β) α)⇒ ElM ((:@:) (γ : β)) α where
proofM = That proofM

Converting a value within a family requires producing the ap-
propriate injection into the right element of the family, plus the tag

7 It is also possible to parameterise the conversion of a single datatype D→M
by a type-level list containing the elements of the family we desire, like we
do for the family conversion D→MFam. In this way we would not need to
rely on the tags from generic-deriving.

9 2013/3/29

(with TagM). We use our :@: GADT for this (which results in a
right-biased encoding of the family):

instance (FamConstrs α)⇒ FamM ((:@:) α) where
PFM ((:@:) α) = D→MFam α

fromM This x = LM (TagM (d→m (fromD x)))
fromM (That k) x = RM (fromM k x)

The constraints on this instance are not trivial, as each type in
the family needs to have a GenericD instance and be convertible
through ConvertD→M . The FamConstrs constraint family expresses
these requirements:

FamConstrs (α :: [?]) :: Constraint
FamConstrs [] = ()
FamConstrs (α : β) = (GenericD α,ConvertD→M (RepD α)

, FamM ((:@:) β),FamConstrs β)

6.4 Example
To test this conversion, assume we have some generic function
sizeM defined in multirec which computes the size of a term. As-
sume we also have Generic instances for the Zig and Zag types
in structured. These give rise to GenericD instances (Section 4),
which give rise to a FamM ((:@:) [Zig,Zag]) instance (this sec-
tion). As such, we can call sizeM directly on a value of type Zig:

sizeM :: (FamM φ , . . .)⇒ φ ι → ι → Int
sizeM = . . .

instance Generic Zig where . . .
instance Generic Zag where . . .
zigZag :: Zig
zigZag = Zig (Zag (Zig (Zag ZigEnd)))
testd→m :: Int
testd→m = sizeM (proof :: [Zag,Zig] :@: Zig) zigZag

Our test value testd→m evaluates to 4 as expected. Note that this
makes multirec even easier to use than before; unlike in our
example in Section 6.1, it is not necessary to define a family
type, since we can use :@:. The index (first argument to sizeM) is
automatically computed from the type signature of proof , so there
is no need to explicitly use This and That. Finally, families can
be easily extended: the code for testd→m works equally well if we
supply proof as having type [Zag,Zig, Int] :@: Zig, for instance.

7. From generic-deriving to syb

The syb library, unlike the others we have seen so far, does not
encode the structure of user datatypes at the type level. Instead, it
views data as successive applications of terms; generic functions
then operate on this applicative structure. The interface presented
to the user hides this view, and is instead based on various traversal
operators. In this section we show how to obtain syb representa-
tions of data from generic-deriving. We use the syb encoding
of Hinze et al. (2006) as the basis of our development instead of
the “official” encoding shipped with GHC, but this does not make
our conversion any less applicable or general.

7.1 Encoding syb

The basis of syb is the Spine datatype, which defines a view on
data as a sequence of applications. A value of type Spine is either a
constructor, or an application of a Spine with functional type to an
argument:

data Spine ::?→ ? where
Con :: α → Spine α

(:�:) :: (Data α)⇒ Spine (α → β)→ α → Spine β

The Data constraint will be explained later.
The Spine datatype is both Functorial and Applicative:

instance Functor Spine where
fmap f (Con x) = Con (f x)
fmap f (c :�: x) = fmap (f◦) c :�: x

instance Applicative Spine where
pure = Con
Con f <∗> x = fmap f x
(c :�: x)<∗> Con y = fmap (λ f x→ f x y) c :�: x
(c :�: x)<∗> (d :�: y) = (fmap (λ f d y→ f (d y)) (c :�: x)

<∗> d) :�: y

We can also define a fold on Spine:

foldSpine :: (∀α β .Data α ⇒ φ (α → β)→ α → φ β)
→ (∀α.α → φ α)→ Spine α → φ α

foldSpine f z (Con c) = z c
foldSpine f z (c :�: x) = foldSpine f z c ‘f ‘ x

Although the type of foldSpine might look intimidating at first, its
first argument is simply the replacement for the :�: constructor, and
the second is the replacement for Con.

The Data class is used to embed conversions between user
datatypes and the Spine generic view:

class (Typeable α)⇒ Data α where
spine :: α → Spine α

gfoldl :: (∀γ β .Data γ ⇒ φ (γ → β)→ γ → φ β)
→ (∀β .β → φ β)→ α → φ α

gfoldl f z = foldSpine f z◦ spine

The Data class has Typeable as a superclass for convenience, be-
cause many generic functions in syb make use of type-safe runtime
cast. The gfoldl method is the basis of all generic consumer func-
tions in syb, and we see that it is just a variant of foldSpine.

The way syb is implemented in GHC, gfoldl is a primitive, and
its definition is automatically generated by the compiler for user
datatypes using the deriving mechanism. In our presentation, the
spine method is the primitive, from which gfoldl follows.

The encoding of user datatypes in syb using Spine is very
simple. As an example, here is the encoding of lists:

instance (Data α)⇒ Data [α] where
spine [] = Con []
spine (h : t) = Con (:) :�: h :�: t

Base types are encoded trivially:

instance Data Int where spine = Con

We show a simplified version of syb, in particular omitting
meta-information and the gunfold function. These are cosmetic
simplifications only; Hinze et al. (2006) describe how to support
meta-information in the Spine view, and Hinze and Löh (2006)
describe how to define gunfold.

7.2 Value conversion
To convert the generic representation of generic-deriving into
that of syb we only need to convert values, as syb has no type-level
representation. As such, we require only a type class:

class ConvertD→S (α :: UnD) where
d→s :: Jα KD ρ → Spine (Jα KD ρ)

The idea is to first build a representation of type Spine (Jα KD ρ),
and later transform this into Spine α . The instances are unsurpris-
ing, and follow the functorial nature of Spine:

instance ConvertD→S UD where
d→s U1D = Con U1D

10 2013/3/29

instance (ConvertD→S α,ConvertD→S β)
⇒ ConvertD→S (α :+:D β) where

d→s (L1D x) = fmap L1D (d→s x)
d→s (R1D x) = fmap R1D (d→s x)

instance (ConvertD→S α,ConvertD→S β)
⇒ ConvertD→S (α :×:D β) where

d→s (x :×:D y) = pure (:×:D)<∗> d→s x <∗> d→s y
instance (Data α)⇒ ConvertD→S (KD ι α) where

d→s (K1D x) = Con K1D :�: x
instance (ConvertD→S α)⇒ ConvertD→S (MD ι α) where

d→s (M1D x) = fmap M1D (d→s x)

With these instances in place, we are ready to define a Data
instance for all GenericD types:

instance (GenericD α,ConvertD→S (RepD α),Typeable α)
⇒ Data α where

spine x = fmap toD (d→s (fromD x))

We first convert the user type to its generic-deriving representa-
tion with fromD, then build a Spine representation using d→s, and
finally adapt this representation with fmap toD.

To test our conversion, assume that we had not given the
Data [α] instance in Section 7.1. The Generic [α] instance of
Section 2.4.2 would cascade down into a Data [α] instance us-
ing the conversion defined in this section. Assuming also generic
functions everywhere and mkT as defined in syb, the expression
everywhere (mkT (λn → n + 1 :: Int)) [1,2,3 :: Int] evaluates to
[2,3,4], as expected.

The code defined in this section, albeit straightforward, allows
GHC developers to scrap the current code for deriving Data in-
stances, as these can be obtained automatically from GenericD in-
stances (which are currently derivable in GHC). Furthermore, it
brings the combinator-style approach to GP of syb within imme-
diate reach of the other approaches. It is also worth nothing that
uniplate, another GP library, can derive its encodings from syb
(Mitchell and Runciman 2007, Section 5.3); therefore, by transitiv-
ity, we can also provide uniplate encodings from structured.

8. Discussion and conclusion
We conclude this paper with a review of related work, and a dis-
cussion of concerns regarding the pratical implementation of the
conversions as shown in the paper.

8.1 Related work
We have defined conversions between GP approaches before, in
Agda (Magalhães and Löh 2012). Those conversions were of a
more theoretical nature, as the intention was to formally compare
approaches. Furthermore, generic-deriving was not involved,
nor was the idea of a structured library at the top of the hierar-
chy, decoupling the quest for an “ideal” generic representation from
the quest of finding an easy-to-use GP library. Our work can be
seen as providing conversions between views. In particular, while
the Generic Haskell compiler had generic views defined internally,
whose adaptation required changing the compiler itself (Holder-
mans et al. 2006, Section 5), our work allows new views to be de-
fined simply by writing a conversion (as in Section 3), or by writing
a new universe and interpretation together with a conversion (as in
Section 5).

Other approaches to providing functionality mixing differ-
ent views have been attempted. Chakravarty et al. (2009) men-
tion support for multiple views, but do this through duplication
of the universe, interpretation, and datatype representations. The
instant-zipper and generic-deriving-extras Hackage pack-
ages provide functionality usually associated with a fixed-point

view on a library without such a view, respectively, a zipper in
instant-generics, and a fold in generic-deriving. This is
achieved by extending the non fixed-point view libraries, rather
than by converting between representations, as we do.

8.2 Performance
One aspect that we have not addressed in this paper is the potential
performance penalty that the conversions might bring. We find it
very likely that such an overhead exists, given that the conversions
are not trivial. However, we also believe that this overhead should
be fully removable by the compiler, using techniques similar to
those described by Magalhães (2013). Performance concerns are
relevant, as these are crucial for user adoption of our conversions.
However, optimisation concerns often result in cumbersome code
where the original idea is obscured. As such, we preferred to focus
on presenting the conversions and their application potential, and
defer performance concerns to future work.

8.3 Practical implementation
Performance concerns are just one of the aspects to consider when
deciding how to best integrate our conversions with the existing
GP libraries. While we have tried to remain faithful to the original
libraries in our encoding, a few modifications to the way gener-
ic-deriving handles the tags in KD and RecD were necessary
to support the conversion to multirec. These changes, besides
being minor, actually improve generic-deriving, as the current
implementation is rather ill-defined with respect to which tag is
used when. Furthermore, we know of no generic function currently
relying on these tags; our conversion in Section 6.2 might be the
first example that actually relies on proper tagging. The addition of
ParD to GenericD in Section 4.1 is entirely unproblematic.

We have used datatype promotion in all approaches, and en-
code meta-information at the type level, instead of using auxiliary
type classes. These changes are not backwards compatible, in par-
ticular because the current implementation of datatype promotion
requires choosing different names for a representation type (e.g.
UR) and its interpretation (UR), while these are often the same in
the current implementations of the libraries. While the implemen-
tation of datatype promotion might change to allow avoiding name
clashing,8 it might be preferrable to have a new release for each li-
brary that breaks backwards compatibility, requires GHC > 7.6,
but homogenises naming conventions and meta-data representa-
tion across libraries, for instance. This would further enhance the
new approach to GP in Haskell that we advocate: a particular li-
brary is just a particular way to view data, and all libraries inter-
play seamlessly because they all share a common root (in this case,
structured).

8.4 Conclusion
In the past, there was a lot of apparent competition between differ-
ent approaches to GP. While it is reasonably easy to use Template
Haskell to derive the encodings of the datatypes needed to use a
particular library, most users seemed to prefer the libraries that had
direct support within GHC, such as syb or generic-deriving. On
the other hand, users had a difficult decision to make, operating un-
der the assumption that they have to pick a single library among the
many that are available, perhaps afraid to make the wrong choice
and to then stumble upon a programming problem that cannot eas-
ily be solved using the chosen library.

Those times are over. GP library authors no longer have to
feel embarassed if they present a new library suitable only for a
specific class of GP programming problems. All they need to do is
to define a conversion path from structured, and their library will

8 See http://hackage.haskell.org/trac/ghc/ticket/6024.

11 2013/3/29

http://hackage.haskell.org/package/instant-zipper
https://github.com/spl/generic-deriving-extras
http://hackage.haskell.org/trac/ghc/ticket/6024

be integrated better than ever before, without any need for Template
Haskell.

Users should no longer worry that they have to make a particular
choice. All GP libraries interact nicely, and they can simply pick the
one that offers the functionality they need right now.

Should structured turn out to be not informative enough to
cover a particular approach, then structured (and with it, GHC
support) can always be refined or extended. Since we do not ad-
vocate to use structured directly, this means that only the direct
conversions from structured have to be extended, and everything
else will just keep working—-we have arrived in the era of truly
generic generic programming!

Acknowledgments
The first author is funded by EPSRC grant number EP/J010995/1.
We thank Nicolas Wu for suggesting the title of this paper, and Sean
Leather for encouraging us to include multirec in our considera-
tions. Jeremy Gibbons, Johan Jeuring, and Sean Leather provided
helpful feedback on an earlier draft of this paper.

References
Manuel M. T. Chakravarty, Gabriel C. Ditu, and Roman Leshchinskiy.

Instant generics: Fast and easy, 2009. Available at http://www.cse.
unsw.edu.au/˜chak/papers/CDL09.html.

Ralf Hinze and Andres Löh. “Scrap Your Boilerplate” revolutions.
In Tarmo Uustalu, editor, Proceedings of the 8th International Con-
ference on Mathematics of Program Construction, volume 4014 of
Lecture Notes in Computer Science, pages 180–208. Springer, 2006.
doi:10.1007/11783596 13.

Ralf Hinze and Andres Löh. Generic programming in 3D. Sci-
ence of Computer Programming, 74:590–628, June 2009.
doi:10.1016/j.scico.2007.10.006.

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. “Scrap Your Boil-
erplate” reloaded. In Proceedings of the 8th international conference
on Functional and Logic Programming, volume 3945, pages 13–29.
Springer-Verlag, 2006. doi:10.1007/11737414 3.

Ralf Hinze, Johan Jeuring, and Andres Löh. Comparing approches to
generic programming in Haskell. In Roland Backhouse, Jeremy Gib-
bons, Ralf Hinze, and Johan Jeuring, editors, Datatype-Generic Pro-
gramming, volume 4719 of Lecture Notes in Computer Science, pages
72–149. Springer-Verlag, 2007. doi:10.1007/978-3-540-76786-2 2.

Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Ro-
driguez Yakushev. Generic views on data types. In Proceedings of the
8th International Conference on Mathematics of Program Construction,
volume 4014 of Lecture Notes in Computer Science, pages 209–234.
Springer, 2006. doi:10.1007/11783596 14.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. In Proceedings
of the 2003 ACM SIGPLAN International Workshop on Types in
Languages Design and Implementation, pages 26–37. ACM, 2003.
doi:10.1145/604174.604179.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate: reflection,
zips, and generalised casts. In Proceedings of the 9th ACM SIGPLAN
International Conference on Functional Programming, pages 244–255.
ACM, 2004. doi:10.1145/1016850.1016883.

José Pedro Magalhães. Less Is More: Generic Programming Theory and
Practice. PhD thesis, Universiteit Utrecht, 2012.

José Pedro Magalhães. Optimisation of generic programs through inlining.
In Accepted for publication at the 24th Symposium on Implementation
and Application of Functional Languages (IFL’12), IFL ’12, 2013.

José Pedro Magalhães and Andres Löh. A formal comparison of approaches
to datatype-generic programming. In James Chapman and Paul Blain
Levy, editors, Proceedings Fourth Workshop on Mathematically Struc-
tured Functional Programming, volume 76 of Electronic Proceedings in
Theoretical Computer Science, pages 50–67. Open Publishing Associa-
tion, 2012. doi:10.4204/EPTCS.76.6.

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh.
A generic deriving mechanism for Haskell. In Proceedings of the
3rd ACM Haskell Symposium on Haskell, pages 37–48. ACM, 2010.
doi:10.1145/1863523.1863529.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing.
In Proceedings of the ACM SIGPLAN Workshop on Haskell, pages 49–
60. ACM, 2007. doi:10.1145/1291201.1291208.

Peter Morris. Constructing Universes for Generic Programming. PhD
thesis, The University of Nottingham, November 2007.

Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans,
Johan Jeuring, and Bastiaan Heeren. A lightweight approach to
datatype-generic rewriting. In Proceedings of the ACM SIGPLAN
Workshop on Generic Programming, pages 13–24. ACM, 2008.
doi:10.1145/1411318.1411321.

Alexey Rodriguez Yakushev, Johan Jeuring, Patrik Jansson, Alex Gerdes,
Oleg Kiselyov, and Bruno C.d.S. Oliveira. Comparing libraries
for generic programming in Haskell. In Proceedings of the 1st
ACM SIGPLAN Symposium on Haskell, pages 111–122. ACM, 2008.
doi:10.1145/1411286.1411301.

Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan
Jeuring. Generic programming with fixed points for mutually recursive
datatypes. In Proceedings of the 14th ACM SIGPLAN International
Conference on Functional Programming, pages 233–244. ACM, 2009.
doi:10.1145/1596550.1596585.

Tom Schrijvers, Simon Peyton Jones, Manuel Chakravarty, and Martin
Sulzmann. Type checking with open type functions. In Proceedings of
the 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, pages 51–62. ACM, 2008. doi:10.1145/1411204.1411215.

Tom Schrijvers, Simon Peyton Jones, Martin Sulzmann, and Dimitrios
Vytiniotis. Complete and decidable type inference for GADTs.
In Proceedings of the 14th ACM SIGPLAN International Confer-
ence on Functional Programming, pages 341–352. ACM, 2009.
doi:10.1145/1596550.1596599.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell, volume 37 of Haskell ’02, pages 1–16. ACM, December 2002.
doi:10.1145/581690.581691.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a
promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on
Types in Language Design and Implementation, pages 53–66. ACM,
2012. doi:10.1145/2103786.2103795.

12 2013/3/29

http://www.cse.unsw.edu.au/~chak/papers/CDL09.html
http://www.cse.unsw.edu.au/~chak/papers/CDL09.html
http://dx.doi.org/10.1007/11783596_13
http://dx.doi.org/10.1016/j.scico.2007.10.006
http://dx.doi.org/10.1007/11737414_3
http://dx.doi.org/10.1007/978-3-540-76786-2_2
http://dx.doi.org/10.1007/11783596_14
http://dx.doi.org/10.1145/604174.604179
http://dx.doi.org/10.1145/1016850.1016883
http://dx.doi.org/10.4204/EPTCS.76.6
http://dx.doi.org/10.1145/1863523.1863529
http://dx.doi.org/10.1145/1291201.1291208
http://dx.doi.org/10.1145/1411318.1411321
http://dx.doi.org/10.1145/1411286.1411301
http://dx.doi.org/10.1145/1596550.1596585
http://dx.doi.org/10.1145/1411204.1411215
http://dx.doi.org/10.1145/1596550.1596599
http://dx.doi.org/10.1145/581690.581691
http://dx.doi.org/10.1145/2103786.2103795

	Introduction
	Notation
	Structure of the paper

	A highly structured library
	Universe
	Interpretation
	Conversion to and from user datatypes
	Example datatype encodings
	Choice
	Lists

	Left- and right-biased encodings
	Type conversion
	Value conversion
	Example

	From structured to generic-deriving
	Encoding generic-deriving
	To redGenericD
	Type representation conversion
	Value conversion

	To redGeneric1D
	Type conversion
	Value conversion

	From generic-deriving to regular
	Encoding regular
	Type conversion
	Value conversion

	From generic-deriving to multirec
	Encoding multirec
	Type conversion
	Value conversion
	Example

	From generic-deriving to syb
	Encoding syb
	Value conversion

	Discussion and conclusion
	Related work
	Performance
	Practical implementation
	Conclusion

