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Overview

I “Normal” diff
I Tree diff
I Generic diff
I Future work
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What is diff?

diff : List A → List A → Diff A

where A is either Char or String.

patch : Diff A → List A → Maybe A

data Diff (A : Set) : Set where
Mk : A → Diff → Diff
Rm : A → Diff → Diff
Cp : A → Diff → Diff -- or without the A
Stop : Diff
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Observations

Minimize size (diff x y), for some definition of size.

patch (diff x y) x ≡ Just y
patch Stop x ≡ Just x
patch (d1 ++ d2) x ≡ patch d1 x >>= patch d2

patch (reverse (diff y x)) x ≡ Just y
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Why not normal diff?

Bad description of the change.

Cannot be done in a typed way – to patch:

I serialize,
I patch the string,
I parse (and hope)

Patching may fail, parsing should not.
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Running example

mutual
data Expr : Set where

1 : Expr
− : Expr → Expr

+ : Expr → Expr → Expr
Let : Decl → Expr → Expr

data Decl : Set where
Val : Expr → Decl

Serves to demonstrate:

I constructors with different numbers of arguments
I mutually recursive types
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Diff on trees (Lozano, Valiente)

data Tree : Set where
Fork : Label → List Tree → Tree

diff : List Tree → List Tree → Diff
patch : Diff → List Tree → Maybe (List Tree)

data Diff : Set where
Mk : Label → Diff → Diff
Rm : Label → Diff → Diff
Cp : Label → Diff → Diff -- or without Label
Stop : Diff
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Example

Let

Val

1

+

1 1

Let

Val

+

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop
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Observations

Subproblems are given by two forests. Trees in the forest belong
to the family of types we consider.

The constructors determine how the forests change.

Both trees (forests) are considered in a depth-first preorder
traversal.
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The universe

Constr : N → Set
Constr n = List (Fin n)

Type : N → Set
Type n = List (Constr n)

Fam : N → Set
Fam n = Vec (Type n) n

Families are a collection of types.

Types are a collection of constuctors.

Constructors contain fields with recursive calls.
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Expressions

Assume that expr is 0 and decl is 1.

ExprFam : Fam 2
ExprFam =

([ ] ::
(expr :: [ ]) ::
(expr :: expr :: [ ]) ::
(decl :: expr :: [ ]) ::
[ ]

) ::
((expr :: [ ]) ::
[ ]

) ::
[ ]

mutual
data Expr : Set where

1 : Expr
− : Expr → Expr

+ : Expr → Expr → Expr
Let : Decl → Expr → Expr

data Decl : Set where
Val : Expr → Decl
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Environments

data Env {A : Set} (I : A → Set) : List A → Set where
[ ] : Env I [ ]
_::_ : {x : A} {xs : List A} →

I x → Env I xs → Env I (x :: xs)

Lists indexed by the list of types of their elements.
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Interpreting the universe

CJ_K : {n : N} →
Constr n → (Fin n → Set) → Set

CJ_K {n} xs f = Env f xs

TJ_K : {n : N} →
Type n → (Fin n → Set) → Set

TJ_K {n} xs f = Σ (Fin (length xs))
(λ n → CJ lookup n (fromList xs) K f)

FJ_K : {n : N} →
Fam n → (Fin n → Set) → Fin n → Set

FJ_K xs f fn = TJ lookup fn xs K f

data µ {n : N} (F : Fam n) (fn : Fin n) : Set where
〈_〉 : FJ F K (µ F) fn → µ F fn
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Fixing a specific family

module GenericDiff {n : N} (F : Fam n) where
. . .
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Helpers

The type of constructors of a type.

constrOf : Fin n → Set
constrOf t = Fin (length (lookup t F))

Given a type and a constructor of that type, the fields.

fields : (t : Fin n) → constrOf t → List (Fin n)
fields t c = lookup c (fromList (lookup t F))
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Generic diff

data Diff : List (Fin n) → List (Fin n) → Set where
Mk : {xs ys : List (Fin n)} →

(y : Fin n) → (c : constrOf y) →
Diff xs (fields y c ++ ys) →
Diff xs (y :: ys)

Rm : {xs ys : List (Fin n)} →
(x : Fin n) → (c : constrOf x) →
Diff (fields x c ++ xs) ys →
Diff (x :: xs) ys

Cp : {xs ys : List (Fin n)} →
(z : Fin n) → (c : constrOf z) →
Diff (fields z c ++ xs) (fields z c ++ ys) →
Diff (z :: xs) (z :: ys)

Stop : Diff [ ] [ ]
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Generic diff

µEnv : List (Fin n) → Set
µEnv = Env (µ F)

patch : {xs ys : List (Fin n)} →
Diff xs ys → µEnv xs → Maybe (µEnv ys)

diff : {xs ys : List (Fin n)} →
µEnv xs → µEnv ys → Diff xs ys
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How to define patch

patch : {xs ys : List (Fin n)} →
Diff xs ys → µEnv xs → Maybe (µEnv ys)

patch (Rm t c ds) (〈 c’, args 〉 :: ts) with c’ ?= c
patch (Rm t c ds) (〈 c’, args 〉 :: ts) | No = Nothing
patch (Rm t c ds) (〈 .c, args 〉 :: ts) | Yes Refl = patch ds (args +++ ts)
patch (Mk t c ds) ts with patch ds ts
. . . | Nothing = Nothing
. . . | Just ts’ with splitEnv (fields t c) ts’
patch (Mk t c ds) ts | Just ._ | (args +++′ rest) = Just (〈 c, args 〉 :: rest)
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What more?

I Constants (then we can recover the “normal” diff)
I Compression (copy entire subtrees)
I Efficiency (memoization)
I Haskell
I Heuristics
I Other notions of Diff


