
[Faculty of Science
Information and Computing Sciences]

Generic diff
Andres Löh

joint work with Eelco Lempsink and Sean Leather

Dept. of Information and Computing Sciences, Utrecht University

IFIP WG 2.1 meeting #64, Weltenburg, April 2, 2009

[Faculty of Science
Information and Computing Sciences]

2

Overview

I “Normal” diff
I Tree diff
I Generic diff
I Future work

[Faculty of Science
Information and Computing Sciences]

3

What is diff?

diff : List A → List A → Diff A

where A is either Char or String.

patch : Diff A → List A → Maybe A

data Diff (A : Set) : Set where
Mk : A → Diff → Diff
Rm : A → Diff → Diff
Cp : A → Diff → Diff -- or without the A
Stop : Diff

[Faculty of Science
Information and Computing Sciences]

3

What is diff?

diff : List A → List A → Diff A

where A is either Char or String.

patch : Diff A → List A → Maybe A

data Diff (A : Set) : Set where
Mk : A → Diff → Diff
Rm : A → Diff → Diff
Cp : A → Diff → Diff -- or without the A
Stop : Diff

[Faculty of Science
Information and Computing Sciences]

3

What is diff?

diff : List A → List A → Diff A

where A is either Char or String.

patch : Diff A → List A → Maybe A

data Diff (A : Set) : Set where
Mk : A → Diff → Diff
Rm : A → Diff → Diff
Cp : A → Diff → Diff -- or without the A
Stop : Diff

[Faculty of Science
Information and Computing Sciences]

4

Observations

Minimize size (diff x y), for some definition of size.

patch (diff x y) x ≡ Just y
patch Stop x ≡ Just x
patch (d1 ++ d2) x ≡ patch d1 x >>= patch d2

patch (reverse (diff y x)) x ≡ Just y

[Faculty of Science
Information and Computing Sciences]

5

Why not normal diff?

Bad description of the change.

Cannot be done in a typed way – to patch:

I serialize,
I patch the string,
I parse (and hope)

Patching may fail, parsing should not.

[Faculty of Science
Information and Computing Sciences]

5

Why not normal diff?

Bad description of the change.

Cannot be done in a typed way – to patch:

I serialize,
I patch the string,
I parse (and hope)

Patching may fail, parsing should not.

[Faculty of Science
Information and Computing Sciences]

5

Why not normal diff?

Bad description of the change.

Cannot be done in a typed way – to patch:

I serialize,
I patch the string,
I parse (and hope)

Patching may fail, parsing should not.

[Faculty of Science
Information and Computing Sciences]

6

Running example

mutual
data Expr : Set where

1 : Expr
− : Expr → Expr

+ : Expr → Expr → Expr
Let : Decl → Expr → Expr

data Decl : Set where
Val : Expr → Decl

Serves to demonstrate:

I constructors with different numbers of arguments
I mutually recursive types

[Faculty of Science
Information and Computing Sciences]

7

Diff on trees (Lozano, Valiente)

data Tree : Set where
Fork : Label → List Tree → Tree

diff : List Tree → List Tree → Diff
patch : Diff → List Tree → Maybe (List Tree)

data Diff : Set where
Mk : Label → Diff → Diff
Rm : Label → Diff → Diff
Cp : Label → Diff → Diff -- or without Label
Stop : Diff

[Faculty of Science
Information and Computing Sciences]

8

Example

Let

Val

1

+

1 1

Let

Val

+

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

Let

Val

1

+

1 1

Let

Val

+

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

Val

1

+

1 1

Val

+

1 1

−

1

Cp ‘Let’

$ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

Val

1

+

1 1

Val

+

1 1

−

1

Cp ‘Let’

$ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

1

+

1 1 +

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’

$ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

1

+

1 1 +

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’

$ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

+

1 1 +

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’

$ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

+

1 1 +

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’

$ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

1 1

1 1

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’

$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

1

1

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’

$ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

−

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’

$ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

1

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’

$ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’

$ Stop

[Faculty of Science
Information and Computing Sciences]

8

Example

Cp ‘Let’ $ Cp ‘Val’ $ Rm ‘1’ $ Cp ‘+’
$ Cp ‘1’ $ Cp ‘1’ $ Mk ‘−’ $ Mk ‘1’
$ Stop

[Faculty of Science
Information and Computing Sciences]

9

Observations

Subproblems are given by two forests. Trees in the forest belong
to the family of types we consider.

The constructors determine how the forests change.

Both trees (forests) are considered in a depth-first preorder
traversal.

[Faculty of Science
Information and Computing Sciences]

10

The universe

Constr : N → Set
Constr n = List (Fin n)

Type : N → Set
Type n = List (Constr n)

Fam : N → Set
Fam n = Vec (Type n) n

Families are a collection of types.

Types are a collection of constuctors.

Constructors contain fields with recursive calls.

[Faculty of Science
Information and Computing Sciences]

11

Expressions

Assume that expr is 0 and decl is 1.

ExprFam : Fam 2
ExprFam =

([] ::
(expr :: []) ::
(expr :: expr :: []) ::
(decl :: expr :: []) ::
[]

) ::
((expr :: []) ::
[]

) ::
[]

mutual
data Expr : Set where

1 : Expr
− : Expr → Expr

+ : Expr → Expr → Expr
Let : Decl → Expr → Expr

data Decl : Set where
Val : Expr → Decl

[Faculty of Science
Information and Computing Sciences]

12

Environments

data Env {A : Set} (I : A → Set) : List A → Set where
[] : Env I []
:: : {x : A} {xs : List A} →

I x → Env I xs → Env I (x :: xs)

Lists indexed by the list of types of their elements.

[Faculty of Science
Information and Computing Sciences]

13

Interpreting the universe

CJ_K : {n : N} →
Constr n → (Fin n → Set) → Set

CJ_K {n} xs f = Env f xs

TJ_K : {n : N} →
Type n → (Fin n → Set) → Set

TJ_K {n} xs f = Σ (Fin (length xs))
(λ n → CJ lookup n (fromList xs) K f)

FJ_K : {n : N} →
Fam n → (Fin n → Set) → Fin n → Set

FJ_K xs f fn = TJ lookup fn xs K f

data µ {n : N} (F : Fam n) (fn : Fin n) : Set where
〈_〉 : FJ F K (µ F) fn → µ F fn

[Faculty of Science
Information and Computing Sciences]

13

Interpreting the universe

CJ_K : {n : N} →
Constr n → (Fin n → Set) → Set

CJ_K {n} xs f = Env f xs

TJ_K : {n : N} →
Type n → (Fin n → Set) → Set

TJ_K {n} xs f = Σ (Fin (length xs))
(λ n → CJ lookup n (fromList xs) K f)

FJ_K : {n : N} →
Fam n → (Fin n → Set) → Fin n → Set

FJ_K xs f fn = TJ lookup fn xs K f

data µ {n : N} (F : Fam n) (fn : Fin n) : Set where
〈_〉 : FJ F K (µ F) fn → µ F fn

[Faculty of Science
Information and Computing Sciences]

13

Interpreting the universe

CJ_K : {n : N} →
Constr n → (Fin n → Set) → Set

CJ_K {n} xs f = Env f xs

TJ_K : {n : N} →
Type n → (Fin n → Set) → Set

TJ_K {n} xs f = Σ (Fin (length xs))
(λ n → CJ lookup n (fromList xs) K f)

FJ_K : {n : N} →
Fam n → (Fin n → Set) → Fin n → Set

FJ_K xs f fn = TJ lookup fn xs K f

data µ {n : N} (F : Fam n) (fn : Fin n) : Set where
〈_〉 : FJ F K (µ F) fn → µ F fn

[Faculty of Science
Information and Computing Sciences]

13

Interpreting the universe

CJ_K : {n : N} →
Constr n → (Fin n → Set) → Set

CJ_K {n} xs f = Env f xs

TJ_K : {n : N} →
Type n → (Fin n → Set) → Set

TJ_K {n} xs f = Σ (Fin (length xs))
(λ n → CJ lookup n (fromList xs) K f)

FJ_K : {n : N} →
Fam n → (Fin n → Set) → Fin n → Set

FJ_K xs f fn = TJ lookup fn xs K f

data µ {n : N} (F : Fam n) (fn : Fin n) : Set where
〈_〉 : FJ F K (µ F) fn → µ F fn

[Faculty of Science
Information and Computing Sciences]

14

Fixing a specific family

module GenericDiff {n : N} (F : Fam n) where
. . .

[Faculty of Science
Information and Computing Sciences]

15

Helpers

The type of constructors of a type.

constrOf : Fin n → Set
constrOf t = Fin (length (lookup t F))

Given a type and a constructor of that type, the fields.

fields : (t : Fin n) → constrOf t → List (Fin n)
fields t c = lookup c (fromList (lookup t F))

[Faculty of Science
Information and Computing Sciences]

16

Generic diff

data Diff : List (Fin n) → List (Fin n) → Set where
Mk : {xs ys : List (Fin n)} →

(y : Fin n) → (c : constrOf y) →
Diff xs (fields y c ++ ys) →
Diff xs (y :: ys)

Rm : {xs ys : List (Fin n)} →
(x : Fin n) → (c : constrOf x) →
Diff (fields x c ++ xs) ys →
Diff (x :: xs) ys

Cp : {xs ys : List (Fin n)} →
(z : Fin n) → (c : constrOf z) →
Diff (fields z c ++ xs) (fields z c ++ ys) →
Diff (z :: xs) (z :: ys)

Stop : Diff [] []

[Faculty of Science
Information and Computing Sciences]

17

Generic diff

µEnv : List (Fin n) → Set
µEnv = Env (µ F)

patch : {xs ys : List (Fin n)} →
Diff xs ys → µEnv xs → Maybe (µEnv ys)

diff : {xs ys : List (Fin n)} →
µEnv xs → µEnv ys → Diff xs ys

[Faculty of Science
Information and Computing Sciences]

18

How to define patch

patch : {xs ys : List (Fin n)} →
Diff xs ys → µEnv xs → Maybe (µEnv ys)

patch (Rm t c ds) (〈 c’, args 〉 :: ts) with c’ ?= c
patch (Rm t c ds) (〈 c’, args 〉 :: ts) | No = Nothing
patch (Rm t c ds) (〈 .c, args 〉 :: ts) | Yes Refl = patch ds (args +++ ts)
patch (Mk t c ds) ts with patch ds ts
. . . | Nothing = Nothing
. . . | Just ts’ with splitEnv (fields t c) ts’
patch (Mk t c ds) ts | Just ._ | (args +++′ rest) = Just (〈 c, args 〉 :: rest)

[Faculty of Science
Information and Computing Sciences]

19

What more?

I Constants (then we can recover the “normal” diff)
I Compression (copy entire subtrees)
I Efficiency (memoization)
I Haskell
I Heuristics
I Other notions of Diff

