
Typed Contracts for Functional Programming

Ralf Hinze1, Johan Jeuring2, and Andres Löh1

1 Institut für Informatik III, Universität Bonn
Römerstraße 164, 53117 Bonn, Germany
{ralf,loeh}@informatik.uni-bonn.de

2 Institute of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands

johanj@cs.uu.nl

Abstract. A robust software component fulfills a contract: it expects
data satisfying a certain property and promises to return data satisfying
another property. The object-oriented community uses the design-by-
contract approach extensively. Proposals for language extensions that
add contracts to higher-order functional programming have appeared re-
cently. In this paper we propose an embedded domain-specific language
for typed, higher-order and first-class contracts, which is both more ex-
pressive than previous proposals, and allows for a more informative blame
assignment. We take some first steps towards an algebra of contracts, and
we show how to define a generic contract combinator for arbitrary alge-
braic data types. The contract language is implemented as a library in
Haskell using the concept of generalised algebraic data types.

1 Introduction

Are you familiar with the following situation?

You are staring at the computer screen. The run of the program you are
developing unexpectedly terminated with a Prelude.head: empty list
message. A quick grep yields a total of 102 calls to head in your program.
It is all very well that the run wasn’t aborted with a core dumped noti-
fication, but the error message provided isn’t very helpful either: which
of the many calls to head is to blame?

If this sounds familiar to you, then you might be interested in contracts. A
contract between software components is much like a contract in business, with
obligations and benefits for both parties. In our scenario, the components are
simply functions: the function head and the function that calls head . Here is a
possible contract between the two parties (from head ’s perspective): if you pass
me a non-empty list, then I shall return its first element. The contract implies
obligations and benefits: the caller is obliged to supply a non-empty list and has
the benefit of receiving the first element without further ado. The restriction on
the input is a benefit for head : it need not deal with the case for the empty list. If
it receives a non-empty list, however, head is obliged to return its first element.

2 R. Hinze, J. Jeuring and A. Löh

As in business, contracts may be violated. In this case the contract specifies
who is to blame: the one who falls short of its promises. Thus, if head is called
with an empty list, then the call site is to blame. In practical terms, this means
that the program execution is aborted with an error message that points to the
location of the caller, just what we needed above.

The underlying design methodology [1], developing programs on the basis of
contracts, was popularised by Bertrand Meyer, the designer of Eiffel [2]. In fact,
contracts are an integral part of Eiffel. Findler and Felleisen [3] later adapted the
approach to higher-order functional languages. Their work has been the major
inspiration of the present paper, which extends and revises their approach.

In particular, we make the following contributions:

– we develop a small embedded domain-specific language for contracts with a
handful of basic combinators and a number of derived ones,

– we show how to define a generic contract combinator for algebraic data types,
– we present a novel approach to blame assignment that additionally tracks

the cause of contract violations,
– as a proof of concept we provide a complete implementation of the approach;

the implementation makes use of generalised algebraic data types,
– we take the first steps towards an algebra of contracts.

The rest of the paper is structured as follows. Sec. 2 introduces the basic
contract language, Sec. 3 then shows how blame is assigned in the case of a
contract violation. We tackle the implementation in Sec. 4 and 5 (without and
with blame assignment). Sec. 6 provides further examples and defines several de-
rived contract combinators. The algebra of contracts is studied in Sec. 7. Finally,
Sec. 8 reviews related work and Sec. 9 concludes.

We use Haskell [4] notation throughout the paper. In fact, the source of
the paper constitutes a legal Haskell program that can be executed using the
Glasgow Haskell Compiler [5]. For the proofs it is, however, easier to pretend
that we are working in a strict setting. The subtleties of lazy evaluation are then
addressed in Sec. 7. Finally, we deviate from Haskell syntax in that we typeset ‘x
has type τ ’ as x : τ and ‘a is consed to the list as’ as a ::as (as in Standard ML).

2 Contracts

This section introduces the main building blocks of the contract language.
A contract specifies a desired property of an expression. A simple contract

is, for instance, { i | i > 0 } which restricts the value of an integer expression to
the natural numbers. In general, if x is a variable of type σ and e is a Boolean
expression, then { x | e } is a contract of type Contract σ, a so-called contract
comprehension. The variable x is bound by the construct and scopes over e.

Contracts are first-class citizens: they can be passed to functions or returned
as results, and most importantly they can be given a name.

nat : Contract Int
nat = { i | i > 0 }

Typed Contracts for Functional Programming 3

As a second example, here is a contract over the list data type that admits only
non-empty lists.

nonempty : Contract [α]
nonempty = { x | not (null x) }

The two most extreme contracts are

false, true : Contract α
false = { x | False }
true = { x | True }

The contract false is very demanding, in fact, too demanding as it cannot be
satisfied by any value. By contrast, true is very liberal: it admits every value.

Using contract comprehensions we can define contracts for values of arbitrary
types, including function types. The contract { f | f 0 0 }, for instance, spec-
ifies that 0 is a fixed point of a function-valued expression of type Int → Int .
However, sometimes contract comprehensions are not expressive enough. Since
a comprehension is constrained by a Haskell Boolean expression, we cannot
state, for example, that a function maps natural numbers to natural numbers:
{ f | ∀n : Int .n > 0⇒ f n > 0 }. We consciously restrict the formula to the right
of the bar to Haskell expressions so that checking of contracts remains feasible.
As a compensation, we introduce a new contract combinator that allows us to
explicitly specify domain and codomain of a function: nat _ nat is the desired
contract that restricts functions to those that take naturals to naturals.

Unfortunately, the new combinator is still too weak. Often we want to relate
the argument to the result, expressing, for instance, that the result is greater
than the argument. To this end we generalise e1 _ e2 to the dependent function
contract (x : e1) _ e2. The idea is that x , which scopes over e2, represents
the argument to the function. The above constraint is now straightforward to
express: (n : nat) _ { r | n < r }. In general, if x is a variable of type σ1, and
e1 and e2 are contracts of type Contract σ1 and Contract σ2 respectively, then
(x : e1) _ e2 is a contract of type Contract (σ1 → σ2). Note that like { x | e },
the dependent function contract (x : e1) _ e2 is a binding construct.

Many properties over data types such as the pair or the list data type can be
expressed using contract comprehensions. However, it is also convenient to be
able to construct contracts in a compositional manner. To this end we provide a
pair combinator that takes two contracts and yields a contract on pairs: nat×nat ,
for instance, constrains pairs to pairs of natural numbers.

We also offer a dependent product contract (x : e1) × e2 with scoping and
typing rules similar to the dependent function contract. As an example, the
contract (n : nat) × ({ i | i 6 n } _ true) of type Contract (Int , Int → α)
constrains the domain of the function in the second component using the value
of the first component. While the dependent product contract is a logically
compelling counterpart of the dependent function contract, we expect the former
to be less useful in practice. The reason is simply that properties of pairs that do
not contain functions can be easily formulated using contract comprehensions.
As a simple example, consider { (x1, x2) | x1 6 x2 }.

4 R. Hinze, J. Jeuring and A. Löh

Γ, x : σ ` e : Bool

Γ ` { x | e } : Contract σ

Γ ` e1 : Contract σ1 Γ, x : σ1 ` e2 : Contract σ2

Γ ` (x : e1) _ e2 : Contract (σ1 → σ2)

Γ ` e : Contract σ

Γ ` [e] : Contract [σ]

Γ ` e1 : Contract σ1 Γ, x : σ1 ` e2 : Contract σ2

Γ ` (x : e1)× e2 : Contract (σ1, σ2)

Γ ` e1 : Contract σ Γ ` e2 : Contract σ

Γ ` e1 & e2 : Contract σ

Fig. 1. Typing rules for contract combinators.

In general, we need a contract combinator for every parametric data type.
For the main bulk of the paper, we confine ourselves to the list data type: the
list contract combinator takes a contract on elements to a contract on lists. For
instance, [nat] constrains integer lists to lists of natural numbers. Like c1×c2, the
list combinator captures only independent properties; it cannot relate elements
of a list. For this purpose, we have to use contract comprehensions—which, on
the other hand, cannot express the contract [nat _ nat].

Finally, contracts may be combined using conjunction: c1 & c2 holds if both
c1 and c2 hold. However, we neither offer disjunction nor negation for reasons
to be explained later (Sec. 4). Fig. 1 summarises the contract language.

3 Blame assignment

A contract is attached to an expression using assert :

head ′ : [α]→ α
head ′ = assert (nonempty _ true) (λx → head x)

The attached contract specifies that the predefined function head requires its
argument to be non-empty and that it ensures nothing. In more conventional
terms, nonempty is the precondition and true is the postcondition. Here and
in what follows we adopt the convention that the ‘contracted’ version of the
identifier x is written x ′.

Attaching a contract to an expression causes the contract to be dynamically
monitored at run-time. If the contract is violated, the evaluation is aborted with
an informative error message. If the contract is fulfilled, then assert acts as the
identity. Consequently, assert has type

assert : Contract α→ (α→ α)

Contracts range from very specific to very liberal. The contract of head ,
nonempty _ true, is very liberal: many functions require a non-empty argument.
On the other hand, a contract may uniquely determine a value. Consider in this
respect the function isqrt , which is supposed to calculate the integer square root.

Typed Contracts for Functional Programming 5

isqrt : Int → Int
isqrt n = loop 0 3 1

where loop i k s | s 6 n = loop (i + 1) (k + 2) (s + k)
| otherwise = i

It is not immediately obvious that this definition actually meets its specification,
so we add a contract.

isqrt ′ : Int → Int
isqrt ′ = assert ((n : nat) _ { r | r > 0 ∧ r2 6 n < (r + 1)2 }) (λn → isqrt n)

Here the postcondition precisely captures the intended semantics of isqrt .
Now that we got acquainted with the contract language, it is time to see

contracts in action. When a contract comprehension is violated, the error mes-
sage points to the expression to which the contract is attached. Let us assume
for the purposes of this paper that the expression is bound to a name which we
can then use for error reporting (in the implementation we refer to the source
location instead). As an example, given the definitions five = assert nat 5 and
mfive = assert nat (−5), we get the following results in an interactive session.

Contracts〉 five
5
Contracts〉 mfive
*** contract failed: the expression ‘mfive’ is to blame.

The number −5 is not a natural; consequently the nat contract sounds alarm.
If a dependent function contract is violated, then either the function is applied

to the wrong argument, or the function itself is wrong. In the first case, the
precondition sends the alarm, in the second case the postcondition. Consider
the functions inc and dec, which increase, respectively decrease, a number.

inc, dec : Int → Int
inc = assert (nat _ nat) (λn → n + 1)
dec = assert (nat _ nat) (λn → n − 1)

Here are some example applications of these functions in an interactive session:

Contracts〉 inc 〈1〉5
6
Contracts〉 inc 〈2〉(−5)
*** contract failed: the expression labelled ‘2’ is to blame.
Contracts〉 dec 〈3〉5
4
Contracts〉 dec 〈4〉0
*** contract failed: the expression dec is to blame.

In the session we put labels in front of the function arguments, 〈i〉e, so that we
can refer to them in error messages (again, in the implementation we refer to

6 R. Hinze, J. Jeuring and A. Löh

the source location). The first contract violation is caused by passing a negative
value to inc: its precondition is violated, hence the argument is to blame. In the
last call, dec falls short of its promise to deliver a natural number, hence dec
itself is to blame.

It is important to note that contract checking and detection of violations are
tied to program runs: dec obviously does not satisfy its contract nat _ nat ,
but this is not detected until dec is applied to 0. In other words, contracts do
not give any static guarantees (‘dec takes naturals to naturals’), they only make
dynamic assertions about particular program runs (‘dec always received and
always delivered a natural number during this run’).

This characteristic becomes even more prominent when we consider higher-
order functions.

codom : (Int → Int)→ [Int]
codom = assert ((nat _ nat) _ [nat]) (λf → [f 〈5〉n | n ← [1 . . 9]])

The function codom takes a function argument of type Int → Int . We cannot
expect that a contract violation is detected the very moment codom is applied
to a function—as we cannot expect that a contract violation is detected the
very moment we attach a contract to λn → n − 1 in dec. Rather, violations are
discovered when the function argument f is later applied in the body of codom.
In the extreme case where the parameter does not appear in the body, we never
get alarmed, unless, of course, the result is negative. Consider the following
interactive session:

Contracts〉 codom 〈6〉(λx → x − 1)
[0, 1, 2, 3, 4, 5, 6, 7, 8]
Contracts〉 codom 〈7〉(λx → x − 2)
*** contract failed: the expression labelled ‘7’ is to blame.

An error is only detected in the second call, though the first call is also wrong.
The error message points to the correct location: the argument is to blame.

The following example has been adapted from the paper by Blume and
McAllester [6].

g : (Int → Int)→ (Int → Int)
g = assert ((nat _ nat) _ true) (λf → λx → f 〈8〉x)

The higher-order function g expects a function satisfying nat _ nat . Again, we
cannot expect that the function contract is checked immediately; rather, it is
tested when the function argument is applied.

Contracts〉 g 〈9〉(λx → x − 1) 〈10〉1
0
Contracts〉 g 〈11〉(λx → x − 1) 〈12〉0
*** contract failed: the expression labelled ‘11’ is to blame.
Contracts〉 g 〈13〉(λx → x) 〈14〉(−7)
*** contract failed: the expression ‘g ’ is to blame (the violation was caused
by the expression(s) labelled ‘8’).

Typed Contracts for Functional Programming 7

concrete syntax Haskell syntax

{ x | p x } Prop (λx → p x)
c1 _ c2 Function c1 (const c2)
(x : c1) _ c2 x Function c1 (λx → c2 x)
c1 × c2 Pair c1 (const c2)
(x : c1)× c2 x Pair c1 (λx → c2 x)
[c] List c
c1 & c2 And c1 c2

Fig. 2. Concrete and abstract syntax of contracts.

The last call shows that g is blamed for a contract violation even though g ’s
postcondition is true. This is because g must also take care that its argument is
called correctly and it obviously does not take sufficient measurements. The error
message additionally points to the location within g that caused the contract
violation. This information is not available in the Findler and Felleisen approach
[3] (see also Sec. 5). Since g returns a function, the cause is not necessarily located
in g ’s body. As a simple example, consider the η-reduced variant of g .

g = assert ((nat _ nat) _ true) (λf → f)

Now the second argument is identified as the cause of the contract violation:

Contracts〉 g 〈15〉(λx → x) 〈16〉(−7)
*** contract failed: the expression ‘g ’ is to blame (the violation was caused
by the expression(s) labelled ‘16’).

4 Implementing contracts

In Sec. 2 we have seen several ways to construct contracts. The syntax we
have used for contracts may seem to suggest that we need an extension of
Haskell to implement contracts. However, using Generalised Algebraic Data
Types (GADTs) [7–9], we can model contracts directly in Haskell. Fig. 2 shows
how the concrete syntax translates to Haskell. Note that the binding constructs
of the concrete syntax are realized using functional components (higher-order
abstract syntax). If we translate the typing rules listed in Fig. 1 to the abstract
representation of contracts, we obtain the following GADT.

data Contract : ∗ → ∗ where
Prop : (α→ Bool)→ Contract α
Function : Contract α→ (α→ Contract β)→ Contract (α→ β)
Pair : Contract α→ (α→ Contract β)→ Contract (α, β)
List : Contract α→ Contract [α]
And : Contract α→ Contract α→ Contract α

Given this data type we can define assert by a simple case analysis.

8 R. Hinze, J. Jeuring and A. Löh

assert : Contract α→ (α→ α)
assert (Prop p) a = if p a then a else error "contract failed"
assert (Function c1 c2) f = (λx ′ → (assert (c2 x ′) · f) x ′) · assert c1

assert (Pair c1 c2) (a1, a2) = (λa ′1 → (a ′1, assert (c2 a ′1) a2)) (assert c1 a1)
assert (List c) as = map (assert c) as
assert (And c1 c2) a = (assert c2 · assert c1) a

The definition makes explicit that only contract comprehensions are checked im-
mediately. In the remaining cases, the contract is taken apart and its constituents
are attached to the corresponding constituents of the value to be checked. Note
that in the Function case the checked argument x ′ is propagated to the codomain
contract c2 (ditto in the Pair case). There is a choice here: alternatively, we
could pass the original, unchecked argument. If we chose this variant, however,
we would sacrifice the idempotence of ‘&’. Furthermore, in a lazy setting the
unchecked argument could provoke a runtime error in the postcondition, con-
sider, for instance, (x : nonempty) _ { y | y 6 head x }.

A moment’s reflection reveals that the checking of independent properties
boils down to an application of the mapping function for the type in question.
In particular, we have

assert (Function c1 (const c2)) f = assert c2 · f · assert c1

assert (Pair c1 (const c2)) (a1, a2) = (assert c1 a1, assert c2 a2)

This immediately suggests how to generalise contracts and contract checking to
arbitrary container types: we map the constituent contracts over the container.

assert (T c1 . . . cn) = mapT (assert c1) . . . (assert cn)

Note that mapping functions can be defined completely generically for arbitrary
Haskell 98 data types [10]. In the next section we will show that we can do
without the GADT; then the contract combinator for an algebraic data type is
just its mapping function.

It remains to explain the equation for And : the conjunction And c1 c2 is
tested by first checking c1 and then checking c2, that is, conjunction is im-
plemented by functional composition. This seems odd at first sight: we expect
conjunction to be commutative; composition is, however, not commutative in
general. We shall return to this issue in Sec. 7. Also, note that we offer conjunc-
tion but neither disjunction nor negation. To implement disjunction we would
need some kind of exception handling: if the first contract fails, then the second
is tried. Exception handling is, however, not available in Haskell (at least not in
the pure, non-IO part). For similar reasons, we shy away from negation.

Although assert implements the main ideas behind contracts, the fact that it
returns an uninformative error message makes this implementation rather useless
for practical purposes. In the following section we will show how to return the
precise location of a contract violation.

Nonetheless, we can use the simple definition of assert to optimise contracted
functions. Re-consider the definition of inc repeated below.

Typed Contracts for Functional Programming 9

inc = assert (nat _ nat) (λn → n + 1)

Intuitively, inc satisfies its contract, so we can optimize the definition by leaving
out the postcondition. Formally, we have to prove that

assert (nat _ nat) (λn → n + 1) = assert (nat _ true) (λn → n + 1)

Note that we must keep the precondition to ensure that inc is called correctly:
the equation assert (nat _ nat) (λn → n + 1) = λn → n + 1 does not hold.
Now, unfolding the definition of assert the equation above rewrites to

assert nat · (λn → n + 1) · assert nat = (λn → n + 1) · assert nat

which can be proved using a simple case analysis.
In general, we say that f satisfies the contract c iff

assert c f = assert c+ f

where c+ is obtained from c by replacing all sub-contracts at positive positions
by true:

(·)+ : Contract α→ Contract α
(Prop p)+ = true
(Function c1 c2)+ = Function c−1 (λx → (c2 x)+)
(·)− : Contract α→ Contract α
(Prop p)− = Prop p
(Function c1 c2)− = Function c+

1 (λx → (c2 x)−)

In the remaining cases, (·)+ and (·)− are just propagated to the components.
As an example, λn → n + 1 satisfies nat _ nat , whereas λn → n − 1 does
not. The higher-order function g of Sec. 3 also does not satisfy its contract
(nat _ nat) _ nat . As an aside, note that (·)+ and (·)− are executable Haskell
functions. Here, the GADT proves its worth: contracts are data that can be as
easily manipulated as, say, lists.

5 Implementing blame assignment

To correctly assign blame in the case of contract violations, we pass program
locations to both assert and to the contracted functions themselves. For the
purposes of this paper, we keep the type Loc of source locations abstract. We
have seen in Sec. 3 that blame assignment involves at least one location. In the
case of function contracts two locations are involved: if the precondition fails,
then the argument is to blame; if the postcondition fails, then the function itself
is to blame. For the former case, we need to get hold of the location of the
argument. To this end, we extend the function by an extra parameter, which is
the location of the ‘ordinary’ parameter.

10 R. Hinze, J. Jeuring and A. Löh

infixr _
newtype α _ β = Fun{app : Locs → α→ β}

In fact, we take a slightly more general approach: we allow to pass a data struc-
ture of type Locs containing one or more locations. We shall provide two imple-
mentations of Locs, one that realizes blame assignment in the style of Findler
& Felleisen and one that additionally provides information about the causers
of a contract violation. We postpone the details until the end of this section
and remark that Locs records at least the locations of the parties involved in a
contract.

The type α _ β is the type of contracted functions: abstractions of this type,
Fun (λ s̀ → λx → e), additionally take locations; applications, app e1 s̀ e2,
additionally pass locations. We abbreviate Fun (λ s̀ → λx → e) by λx _ e
if s̀ does not appear free in e (which is the norm for user-defined functions).
Furthermore, app e1 s̀ e2 is written e1 s̀e2. In the actual program source, the
arguments of assert and of the contracted functions are always single locations,
written 〈`〉, which explains the notation used in Sec. 3.

Since contracted functions have a distinguished type, we must adapt the type
of the Function constructor.

Function : Contract α→ (α→ Contract β)→ Contract (α _ β)

Given these prerequisites, we can finally implement contract checking with
proper blame assignment.

assert : Contract α→ (Locs → α→ α)
assert (Prop p) s̀ a

= if p a then a else error ("contract failed: " ++ blame s̀)
assert (Function c1 c2) s̀f f

= Fun (λ`x → (λx ′ → (assert (c2 x ′) s̀f · app f `x) x ′) · assert c1 (s̀f 3 `x))
assert (Pair c1 c2) s̀ (a1, a2) = (λa ′1 → (a ′1, assert (c2 a ′1) s̀ a2)) (assert c1 s̀ a1)
assert (List c) s̀ as = map (assert c s̀) as
assert (And c1 c2) s̀ a = (assert c2 s̀ · assert c1 s̀) a

The Function case merits careful study. Note that s̀f are the locations involved
in f ’s contract and that `x is the location of its argument (`x has type Locs
but it is always a single location of the form 〈`〉). First, the precondition c1 is
checked possibly blaming s̀f or `x. The single location `x is then passed to f ,
whose evaluation may involve further checking. Finally, the postcondition c2 x ′

is checked possibly blaming a location in s̀f . Note that c2 receives the checked
argument, not the unchecked one.

It may seem surprising at first that assert c1 adds s̀f to its file of suspects:
can f be blamed if the precondition fails? If f is a first-order function, then this
is impossible. However, if f takes a function as an argument, then f must take
care that this argument is called correctly (see the discussion about g at the end
of Sec. 3). If f does not to ensure this, then f is to blame.

In essence, assert turns a contract of type Contract α into a contracted
function of type α _ α. If we re-phrase assert in terms of this type, we obtain

Typed Contracts for Functional Programming 11

assert : Contract α → (α _ α)
assert (Prop p) = prop p
assert (Function c1 c2) = fun (assert c1) (assert · c2)
assert (Pair c1 c2) = pair (assert c1) (assert · c2)
assert (List c) = list (assert c)
assert (And c1 c2) = assert c2 ¦ assert c1

prop : (α → Bool) → (α _ α)
prop p = Fun (λ s̀ a → if p a then a else error ("contract failed: " ++ blame s̀))

fun : (α1 _ β1) → (β1 → α2 _ β2) → ((β1 _ α2) _ (α1 _ β2))
fun g h = Fun (λ s̀f f → Fun (λ`x →

(λx ′ → (app (h x ′) s̀f · app f `x) x ′) · app g (s̀f 3 `x)))

pair : (α1 _ β1) → (β1 → α2 _ β2) → ((α1, α2) _ (β1, β2))
pair g h = Fun (λ s̀ (a1, a2) → (λa ′1 → (a ′1, app (h a ′1) s̀ a2)) (app g s̀ a1))

list : (α _ β) → ([α] _ [β])
list g = Fun (λ s̀ → map (app g s̀))

(¦) : (β _ γ) → (α _ β) → (α _ γ)
g ¦ h = Fun (λ s̀ → app g s̀ · app h s̀)

Fig. 3. Contract checking with proper blame assignment.

the implementation listed in Fig. 3. Note that the elements of α _ β form
the arrows of a category, the Kleisli category of a comonad, with λx _ x as the
identity and ‘¦’ acting as composition. Furthermore, list is the mapping function
of the list functor. The implementation also makes clear that we can do without
the GADT provided assert is the only operation on the data type Contract :
the combinators of the contract library can be implemented directly in terms of
prop, fun, pair , list and ‘¦’. Then assert is just the identity.

It remains to implement the data type Locs and the associated functions.
Let us start with a simple version that supports blame assignment in the style
of Findler & Felleisen. A contract either involves one or two parties.

data Locs = Pos{pos : Loc} | NegPos{neg : Loc, pos : Loc}
We distinguish between positive and negative locations corresponding to function
and argument locations. Blame is always assigned to the positive location.

blame : Locs → String
blame s̀ = "the expression " ++ show (pos s̀) ++ " is to blame."

The actual locations in the source are positive.

〈`〉 = Pos `

The magic lies in the implementation of ‘3’, which combines two elements of
type Locs.

(3) : Locs → Locs → Locs
Pos ` 3 Pos `′ = NegPos ` `′

NegPos `′ `3 = NegPos ` `′

12 R. Hinze, J. Jeuring and A. Löh

data Locs = NegPos{neg : [Loc], pos : [Loc]}
blame : Locs → String
blame s̀ = "the expression " ++ show (head (pos s̀)) ++ " is to blame"

++ (case tail (pos s̀) of
[] → "."

s̀′ → " (the violation was caused by the expression(s) " ++
concat (interleave ", " (map show s̀′)) ++ ").")

〈·〉 : Loc → Locs
〈`〉 = NegPos [] [`]

(3) : Locs → Locs → Locs
NegPos ns ps 3 NegPos ns ′ ps ′ = NegPos (ps ++ ns ′) (ns ++ ps ′)

Fig. 4. Extended blame assignment.

Two single locations are merged into a double location; if the first argument is
already a double location, then the second argument is ignored. Furthermore,
positive and negative occurrences are interchanged in the second case. This is
vital for functions of order 2 or higher. Re-consider the function g of Sec. 3.

g = assert ((nat _ nat) _ true) 〈0〉(λf _ λx _ f 〈2〉x)
... g 〈1〉(λx _ x) 〈3〉(−7) ...

The precondition of g , nat _ nat , and the postcondition of g ’s argument f , nat ,
are checked using Pos 03 Pos 1 = NegPos 0 1. The precondition of f , however,
is checked using NegPos 0 1 3 Pos 2 = NegPos 1 0. Thus, if f ’s precondition
fails, g itself is blamed.

It is apparent that ‘3’ throws away information: location 2, which possibly
causes the contract violation, is ignored. We can provide a more informative
error message if we keep track of all the locations involved. To this end we turn
Locs into a pair of stacks, see Fig. 4. Blame is assigned to the top-most element
of the stack of positive locations; the remaining entries if any detail the cause
of the contract violation. The new version of ‘3’ simply concatenates the stacks
after swapping the two stacks of its first argument. Just in case you wonder: the
total length of the stacks is equal to the order of the contracted function plus
one. Thus, the stacks seldom contain more than 2 or 3 elements.

6 Examples

In this section we give further examples of the use of contracts. Besides, we shall
introduce a number of derived contract combinators.

6.1 Sorting

An invariant is a property that appears both as a pre- and postcondition. To
illustrate the use of invariants, consider the implementation of insertion sort:

Typed Contracts for Functional Programming 13

insertion-sort : (Ord α)⇒ [α]→ [α]
insertion-sort = foldr insert []
insert : (Ord α)⇒ α→ [α]→ [α]
insert a [] = [a]
insert a1 (a2 :: as) | a1 6 a2 = a1 :: a2 :: as

| otherwise = a2 :: insert a1 as

The helper function insert takes an element a and an ordered list, and inserts
the element at the right, according to the order, position in the list. In other
words, insert a takes an ordered list to an ordered list.

insert ′ : (Ord α)⇒ α _ [α] _ [α]
insert ′ = assert (true _ ord _ ord) (λa _ λx _ insert a x)

The contract ord for ordered lists is defined as follows:

ord : (Ord α)⇒ Contract [α]
ord = { x | ordered x }
ordered : (Ord α)⇒ [α]→ Bool
ordered [] = True
ordered [a] = True
ordered (a1 :: a2 :: as) = a1 6 a2 ∧ ordered (a2 :: as)

The type ‘ordered list’ can be seen as an abstract data type (it is concrete here,
but it could easily be made abstract), whose invariant is given by ord . Other
ADTs such as heaps, search trees etc can be handled in an analogous manner.

For completeness, here is the contracted version of insertion-sort:

insertion-sort ′ : (Ord α)⇒ [α] _ [α]
insertion-sort ′ = assert (true _ ord) (λx _ insertion-sort x)

Note that we did not specify that the output list is a permutation of the input
list. Assuming a function bag : (Ord α)⇒ [α]→ *α+ that turns a list into a bag,
we can fully specify sorting: (x : true) _ ord & { s | bag x bag s }. Loosely
speaking, sorting preserves the ‘baginess’ of the input list. Formally, g : σ → σ
preserves the function f : σ → τ iff f x f (g x) for all x . Again, we can single
out this idiom as a contract combinator.

preserves : (Eq β)⇒ (α→ β)→ Contract (α _ α)
preserves f = (x : true) _ { y | f x f y }

Using this combinator the sort contract now reads (true _ ord) & preserves bag .
Of course, either bag or the equality test for bags is an expensive operation (it
almost certainly involves sorting), so we may content ourselves with a weaker
property, for instance, that insertion-sort preserves the length of the input list:
(true _ ord) & preserves length.

The example of sorting shows that the programmer or library writer has a
choice as to how precise contracts are. The fact that contracts are first-class

14 R. Hinze, J. Jeuring and A. Löh

citizens renders it possible to abstract out common idioms. As a final twist on
this topic, assume that you already have a trusted sorting function at hand. Then
you could simply specify that your new sorting routine is extensionally equal to
the trusted one. We introduce the is contract combinator for this purpose.

is : (Eq β)⇒ (α→ β)→ Contract (α _ β)
is f = (x : true) _ { y | y f x }
insertion-sort ′′ = assert (is sort) (λx _ insertion-sort x)

6.2 Recursion schemes

The function insertion-sort is defined in terms of foldr , the catamorphism of the
list data type. An intriguing question is whether we can also attach a contract
to foldr itself?

foldr : (α→ β → β)→ β → [α]→ β
foldr f e [] = e
foldr f e (a :: as) = f a (foldr f e as)

The application to sorting gives (true _ ord _ ord) _ ord _ true _ ord as a
contract, but this one is, of course, way too specific. The idea suggests itself to
abstract from the invariant, that is, to pass the invariant as an argument.

foldr ′ : Contract β → (α _ β _ β) _ β _ [α] _ β
foldr ′ inv = assert ((true _ inv _ inv) _ inv _ true _ inv)

(λf _ λe _ λx _ foldr (λa → λb → f 〈17〉a 〈18〉b) e x)

Again, the fact that contracts are first-class citizens proves its worth. Higher-
order functions that implement general recursion schemes or control constructs
typically take contracts as arguments.

Interestingly, we can optimize foldr ′ as it satisfies its contract:

assert ((true _ inv _ inv) _ inv _ true _ inv) foldr
= assert ((true _ true _ inv) _ inv _ true _ true) foldr

where foldr = λf _ λe _ λx _ foldr (λa → λb → f 〈17〉a 〈18〉b) e x is the
contracted version of foldr . If we unfold the definition of assert , the equation
simplifies to

assert inv · foldr f̄ ē = foldr f̂ ē (1)

where f̄ = assert (true _ inv _ inv) f , f̂ = assert (true _ true _ inv) f ,
and ē = assert inv e. Equation (1) can be shown either by a simple appeal to
foldr ’s fusion law [11] or using parametricity [12]. In both cases, it remains to
prove that

assert inv ē = ē
assert inv (f̄ a as) = f̂ a (assert inv as)

Both parts follow immediately from the idempotence of conjunction: c & c = c
or more verbosely assert c · assert c = assert c, see Sec. 7.

Typed Contracts for Functional Programming 15

7 Properties of contracts

In this section we study the algebra of contracts. The algebraic properties can
be used, for instance, to optimize contracts: we shall see that [c1] & [c2] is the
same as [c1 & c2], but the latter contract is more efficient. The properties are
also helpful for showing that a function satisfies its contract: we have seen that
the ‘correctness’ of foldr ′ relies on c & c = c.

Up to now we have pretended to work in a strict language: we did not consider
bottom in the proofs in the previous section. Let us now switch back to Haskell’s
non-strict semantics in order to study the algebra of contracts in a more general
setting.

It is easy to show that assert c is less than or equal to assert true:

c 4 true

where ‘4’ denotes the standard information ordering. This property implies, in
particular, that assert c is strict. Note that, for brevity, we abbreviate the law
assert c1 4 assert c2 by c1 4 c2 (ditto for equations).

Now, what happens if we apply the same contract twice; is the result the
same as applying it once? In other words, is ‘&’ idempotent? One can show that
idempotence holds if ‘&’ is commutative (the other cases go through easily).
Since ‘&’ is implemented by function composition, commutativity is somewhat
doubtful and, indeed, it does not hold in general as the following example shows:
let c1 = { x | sum x 0 } and c2 = [false], then

Contracts〉 length (assert (c1 & c2) [−2, 2])
2
Contracts〉 length (assert (c2 & c1) [−2, 2])
*** contract failed: the expression ‘[−2, 2]’ is to blame.
Contracts〉 length (assert ((c1 & c2) & (c1 & c2)) [−2, 2])
*** contract failed: the expression ‘[−2, 2]’ is to blame.

The reason is that [false] is not the same as false in a lazy setting: the first
contract returns a lazy list of contract violations, the second is a contract vio-
lation. In a strict setting, commutativity holds trivially as assert c x ∈ {⊥, x }.
The first and the last call demonstrate that idempotence of ‘&’ does not hold for
contracts that involve conjunctions, that is, these contracts are not projections.

Fig. 5 summarises the properties of conjunctions. Equations that are marked
with a (†) only hold in a strict setting. The list combinator and the independent
variants of ‘_’ and ‘×’ are implemented in terms of mapping functions. The
remaining laws listed in Fig. 5 are immediate consequences of the well-known
functor laws for these maps (bearing in mind that true corresponds to id and
‘&’ to composition).

8 Related work

Contracts are widely used in procedural and object-oriented (first-order) pro-
gramming languages [2]. The work on higher-order contracts by Findler and

16 R. Hinze, J. Jeuring and A. Löh

false & c = false
c & false = false
true & c = c
c & true = c

c1 & (c2 & c3) = (c1 & c2) & c3

c1 & c2 = c2 & c1 (†)
c & c = c (†)

{ x | p1 } & { x | p2 } = { x | p1 x ∧ p2 x }

true _ true = true
(c1 _ d1) & (c2 _ d2) = (c2 & c1) _ (d1 & d2)

true × true = true
(c1 × d1) & (c2 × d2) = (c1 & c2)× (d1 & d2)

[true] = true
[c1 & c2] = [c1] & [c2]

Fig. 5. Properties of contracts.

Felleisen [13, 3] has been the main inspiration for this paper. Blume and McAlles-
ter [6, 14] describe a sound and complete model for F&F contracts, which proves
that the contract checker discovers all violations, and always assigns blame prop-
erly. They show how by restricting the predicate contracts in the F&F language
mixing semantics and soundness is avoided, and they show how to regain the ex-
pressiveness of the original F&F language by adding general recursive contracts.
Furthermore, Findler, Blume, and Felleisen [15] prove many properties about
contracts, for example, that contracts are a special kind of projections (which
have been used to give a meaning to types), and that contracts only modify the
behaviour of a program to assign blame. We have implemented contracts as a
library in Haskell, using generalised algebraic data types, giving a strongly typed
approach to contracts. Our approach allows for a more informative blame assign-
ment. We provide contract constructors for pairs, lists and algebraic data types
and a combinator for conjunction. Conjunctions greatly increase the usability
of the contract language: they allow the programmer to specify independent
properties separately. However, conjunctions also have a disturbing effect on the
algebra: in a lazy setting, contracts that include conjunctions are not necessarily
projections.

Stating and verifying properties of software is one of the central themes in
computer science. The properties of interest range from simple properties like
‘this function takes an integer and returns an integer’ to complex properties that
precisely describe the behaviour of a function like the contract for insertion-sort
given in Sec. 6.1. Relatively simple properties like Hindley-Milner types can be
statically checked by a compiler. To statically prove a complex property for a
function it is usually necessary to resort to theorem provers or interactive type-
checking tools. Contracts also allow the specification of complex properties; their
checking, however, is relegated to run-time. The design space is summarised in
the table below.

static checking dynamic checking
simple properties static type checking dynamic type checking

complex properties theorem proving contract checking

Typed Contracts for Functional Programming 17

Contracts look a bit like types, but they are not. Contracts are dynamic in-
stead of static, and they dynamically change the program. Contracts also differ
from dependent types [16]. A dependent type may depend on a value, and may
take a different form depending on a value. A contract refines a type (besides
changing the behaviour as explained above). Dependently typed programs con-
tain a proof of the fact that the program satisfies the property specified in the
type. A contract is only checked, and might fail.

As a characteristic property, contracts are attached to program points, which
suggests that they cannot capture general algebraic properties such as associa-
tivity or distributivity. These properties typically involve several functions or
several calls to the same function, which makes it hard to attach them to one
program point. Furthermore, they do not follow the type structure as required by
contracts. As a borderline example, an algebraic property that can be formulated
as a contract, since it can be written in a type-directed fashion, is idempotence
of a function:

f ′ = assert (true _ { y | y f y }) (λx _ f x)

In general, however, algebraic properties differ from properties that can be ex-
pressed using contracts. In practice, we expect that contract checking is largely
complementary to tools that support expressing and testing general algebraic
properties such as Quickcheck [17]. We may even observe a synergy: Quickcheck
can possibly be a lot more effective in a program that has good contracts.

GHC [5], one of the larger compilers for Haskell, provides assertions for ex-
pressions: assert x returns x only if p evaluates to True. The function assert is
a strict function. Chitil et al. [18] show how to define assert lazily. In contrast
to contracts, assertions do not assign blame: if the precondition of a function is
not satisfied, the function is blamed. Furthermore, contracts are type directed,
whereas an assertion roughly corresponds to a contract comprehension.

9 Conclusion

We have introduced an embedded domain-specific language for typed, higher-
order and first-class contracts, which is both more expressive than previous
proposals, and allows for a more informative blame assignment. The contract
language is implemented as a library in Haskell using the concept of gener-
alised algebraic data types. We have taken some first steps towards an algebra
of contracts, and we have shown how to define a generic contract combinator for
arbitrary algebraic data types.

We left a couple of topics for future work. We intend to take an existing
debugger or tracer for Haskell, and use the available information about source
locations to let blaming point to real source locations, instead of user-supplied
locations as supported by the implementation described in this paper. Further-
more, we want to turn the algebra for contracts into a more or less complete set
of laws for contracts.

18 R. Hinze, J. Jeuring and A. Löh

Acknowledgements We are grateful to Matthias Blume, Matthias Felleisen,
Robby Findler and the five anonymous referees for valuable suggestions regarding
content and presentation. Special thanks go to Matthias Blume and referee #5
for pointing out infelicities in the previous implementation of blame assignment.

References

1. Meyer, B.: Applying ‘design by contract’. IEEE Computer 25(10) (1992) 40–51
2. Meyer, B.: Eiffel: The Language. Prentice Hall (1992)
3. Findler, R.B., Felleisen, M.: Contracts for higher-order functions. ACM SIGPLAN

Notices 37(9) (2002) 48–59
4. Peyton Jones, S.: Haskell 98 Language and Libraries. Cambridge University Press

(2003)
5. The GHC Team: The Glorious Glasgow Haskell Compilation System User’s Guide,

Version 6.4.1. (2005) Available from http://www.haskell.org/ghc/.
6. Blume, M., McAllester, D.: A sound (and complete) model of contracts. ACM

SIGPLAN Notices 39(9) (2004) 189–200
7. Xi, H., Chen, C., Chen, G.: Guarded recursive datatype constructors. In: POPL

’03, ACM Press (2003) 224–235
8. Hinze, R.: Fun with phantom types. In Gibbons, J., de Moor, O., eds.: The Fun of

Programming. Palgrave Macmillan (2003) 245–262 ISBN 1-4039-0772-2 hardback,
ISBN 0-333-99285-7 paperback.

9. Peyton Jones, S., Washburn, G., Weirich, S.: Wobbly types: Type inference for
generalised algebraic data types. Technical Report MS-CIS-05-26, University of
Pennsylvania (2005)

10. Hinze, R.: Polytypic values possess polykinded types. Science of Computer Pro-
gramming 43 (2002) 129–159

11. Hutton, G.: A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming 9(4) (1999) 355–372

12. Wadler, P.: Theorems for free! In: The Fourth International Conference on Func-
tional Programming Languages and Computer Architecture (FPCA’89), London,
UK, Addison-Wesley Publishing Company (1989) 347–359

13. Findler, R.B.: Behavioral software contracts (dissertation). Technical Report
TR02-402, Department of Computer Science, Rice University (2002)

14. Blume, M., McAllester, D.: Sound and complete models of contracts. Journal of
Functional Programming (2006) to appear.

15. Findler, R.B., Blume, M., Felleisen, M.: An investigation of contracts as projec-
tions. Technical Report TR-2004-02, The University of Chicago (2004)

16. Nordström, B., Petersson, K., Smith, J.: Programming in Martin-Löf’s Type The-
ory. Oxford University Press (1990)

17. Claessen, K., Runciman, C., Chitil, O., Hughes, J., Wallace, M.: Testing and
tracing lazy functional programs using Quickcheck and Hat. In Jeuring, J., Pey-
ton Jones, S., eds.: Advanced Functional programming. Volume 2638 of Lecture
Notes in Computer Science., Springer-Verlag (2003)

18. Chitil, O., McNeill, D., Runciman, C.: Lazy assertions. In Trinder, P., Michaelson,
G., Peña, R., eds.: Implementation of Functional Languages: 15th International
Workshop, IFL 2003, Edinburgh, UK, September 8–11, 2003. Volume 3145 of Lec-
ture Notes in Computer Science., Springer-Verlag (2004) 1–19

