
Attribute Grammars in Haskell with UUAG

Andres Löh
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A simplified view on compilers

I Input is transformed into output.
I Input and output language have little structure.
I During the process structure such as an Abstract Syntax

Tree (AST) is created.

input code

AST

output code



Abstract syntax and grammars

I The structure in an AST is best described by a (context-free)
grammar.

I A concrete value (program) is a word of the language
defined by that grammar.

Expr→ Var -- variable
| Expr Expr -- application
| Var Expr -- lambda abstraction

I The rules in a grammar are called productions. The right
hand side of a rule is derivable from the left hand side.

I The symbols on the left hand side are called nonterminals.
I A word is in the language defined by the grammar if it is

derivable from the root nonterminal in a finite number of
steps.



Example grammar

In the following, we will use the following example grammar
for a very simple language:

Root → Expr

Expr → Var -- variable
| Expr Expr -- application
| Var Expr -- λ
| Decls Expr -- let

Decls→ Decl Decls
| ε

Decl → Var Expr

Var → String -- name



Haskell: Algebraic datatypes

I In Haskell, you can define your own datatypes.
I Choice is encoded using multiple constructors.
I Constructors may contain fields.
I Types can be parametrized.
I Types can be recursive.

data Bit = Zero | One
data Complex = Complex Real Real
data Maybe a = Just a | Nothing
data List a = Nil | Cons a (List a)
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Haskell: Algebraic datatypes (contd.)

I There is a builtin list type with special syntax.

data [a ] = [ ] | a : [a ]
[1, 2, 3, 4, 5 ] = = (1 : (2 : (3 : (4 : (5 : [ ])))))



Grammars correspond to datatypes

I Given this power, each nonterminal can be seen as a data
type.

I Productions correspond to definitions of constructors.
I For each constructor, we need a name.
I Type abstraction is not needed, but recursion is.



The example grammar translated

Root → Expr

Expr → Var
| Expr Expr
| Var Expr
| Decls Expr

Decls→ Decl Decls
| ε

Decl → Var Expr

Var → String

data Root = Root Expr

data Expr = Var Var
| App Expr Expr
| Lam Var Expr
| Let Decls Expr

data Decls = Cons Decls Decls
| Nil {- ε -}

data Decl = Decl Var Expr

data Var = Ident String



The example grammar translated

Root → Expr

Expr → Var
| Expr Expr
| Var Expr
| Decls Expr

Decls→ Decl Decls
| ε

Decl → Var Expr

Var → String

DATA Root | Root Expr

DATA Expr | Var Var
| App fun : Expr arg : Expr
| Lam Var Expr
| Let Decls Expr

DATA Decls | Cons hd : Decls tl : Decls
| Nil {- ε -}

DATA Decl | Decl Var Expr

DATA Var | Ident name : String



The example grammar translated

Root → Expr

Expr → Var
| Expr Expr
| Var Expr
| Decls Expr

Decls→ Decl Decls
| ε

Decl → Var Expr

Var → String

DATA Root | Root Expr

DATA Expr | Var Var
| App fun : Expr arg : Expr
| Lam Var Expr
| Let Decls Expr

TYPE Decls = [Decl ]

DATA Decl | Decl Var Expr

DATA Var | Ident name : String



UUAG datatypes

I Datatypes in UUAG are much like in Haskell.
I Constructors of different datatypes may have the same

name.
I Some minor syntactical differences.
I Each field has a name. The type name is the default.

DATA Expr | Var Var
| App fun : Expr arg : Expr
| Lam Var Expr
| Let Decls Expr

is an abbreviation of

DATA Expr | Var var : Var
| App fun : Expr arg : Expr
| Lam var : Var expr : Expr
| Let decls : Decls expr : Expr
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An example value

Root (Let (Cons (Decl (Ident "k") (Var (Ident "const")))
(Cons (Decl (Ident "i") (Lam (Ident "x")

(Var (Ident "x"))))
Nil))

(App (Var (Ident "k")) (Var (Ident "i"))))

Haskell-like syntax:

let k = const
i = λx→ x

in k i



AST

Root (Root)

Let (Expr)

Cons (Decls)

Decl (Decl) Cons (Decls)

Ident (Var)Var (Expr)

Ident (Var)

Decl (Decl)

Ident (Var)Lam (Expr)

Ident (Var)Var (Expr)

Ident (Var)

Nil (Decls)

App (Expr)

Var (Expr) Var (Expr)

Ident (Var) Ident (Var)



Computation follows structure

I Many computations can be expressed in a common way.
I Information is passed upwards.
I Constructors are replaced by operations.
I In the leaves, results are created.
I In the nodes, results are combined.



Synthesised attributes

I In UUAG (and in attribute grammars), computations are
modelled by attributes.

I Each of the examples defines an attribute.
I Attributes that are computed bottom-up are called

synthesised attributes.



Synthesised attribute computation in UUAG

ATTR Root Expr Decls Decl Var
[ | | allvars : { [String ]} ]

SEM Root
| Root lhs.allvars = @expr.allvars

SEM Expr
| Var lhs.allvars = @var.allvars
| App lhs.allvars = @fun.allvars∪@arg.allvars
| Lam lhs.allvars = @var.allvars∪@expr.allvars
| Let lhs.allvars = @decls.allvars∪@expr.allvars

SEM Decls
| Cons lhs.allvars = @hd.allvars∪@tail.allvars
| Nil lhs.allvars = [ ]

SEM Decl
| Decl lhs.allvars = @var.allvars∪@expr.allvars

SEM Var
| Ident lhs.allvars = [@name ]
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ATTR Root Expr Decls Decl Var
[ | | allvars : { [String ]} USE {∪} { [ ]} ]

SEM Root
| Root lhs.allvars = @expr.allvars

SEM Expr
| Var lhs.allvars = @var.allvars
| App lhs.allvars = @fun.allvars∪@arg.allvars
| Lam lhs.allvars = @var.allvars∪@expr.allvars
| Let lhs.allvars = @decls.allvars∪@expr.allvars

SEM Decls
| Cons lhs.allvars = @hd.allvars∪@tail.allvars
| Nil lhs.allvars = [ ]

SEM Decl
| Decl lhs.allvars = @var.allvars∪@expr.allvars

SEM Var
| Ident lhs.allvars = [@name ]



Synthesised attribute computation in UUAG

ATTR Root Expr Decls Decl Var
[ | | allvars : { [String ]} USE {∪} { [ ]} ]

SEM Root
| Root lhs.allvars = @expr.allvars

SEM Expr
| Var lhs.allvars = @var.allvars
| App lhs.allvars = @fun.allvars∪@arg.allvars
| Lam lhs.allvars = @var.allvars∪@expr.allvars
| Let lhs.allvars = @decls.allvars∪@expr.allvars

SEM Decls
| Cons lhs.allvars = @hd.allvars∪@tail.allvars
| Nil lhs.allvars = [ ]

SEM Decl
| Decl lhs.allvars = @var.allvars∪@expr.allvars

SEM Var
| Ident lhs.allvars = [@name ]



Synthesised attribute computation in UUAG

ATTR ∗
[ | | allvars : { [String ]} USE {∪} { [ ]} ]

SEM Root
| Root lhs.allvars = @expr.allvars
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| App lhs.allvars = @fun.allvars∪@arg.allvars
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Abbreviations

I UUAG allows the programmer to omit straight-forward
propagation.

I For synthesised attributes, a synthesised attribute is by
default propagated from the leftmost child that provides
an attribute of the same name.

I If instead the results should be combined in a uniform
way, a USE construct can be employed. This takes a
constant which becomes the default for a leaf, and a binary
operator which becomes the default combination operator.
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Sets of nonterminals

SET All = Root Expr Decls Decl Var

∗
-- implicitly defined All, contains all DATA types in scope

SET D = Decls Decl

All−D
-- set difference

Root→ Var
-- all nonterminals on paths from Root to Var, excluding Root

I Such sets can be used as arguments to ATTR and SEM.



Combining computations

I Attributes can (mutually) depend on each other.

ATTR ∗
[ | | freevars : { [String ]} USE {∪} { [ ]} ]

ATTR D
[ | | defvars : { [String ]} USE {++} { [ ]} ]

SEM Var
| Ident lhs.freevars = [@name ]

SEM Expr
| Lam lhs.freevars = @expr.freevars−@var.freevars
| Let lhs.freevars = (@expr.freevars∪@decls.freevars)

−@decls.defvars
SEM Decl
| Decl lhs.freevars = @expr.freevars -- overriding USE

lhs.defvars = @var.freevars



Distributing information

I Sometimes synthesised attributes depend on outside
information.

I Examples: Options, parameters, environments, results of
other computations.

I In these cases it is not sufficient to pass information
bottom-up. We need top-down attributes, too!

I Such attributes are called inherited attributes.



A substitution environment

ATTR Root (Root→ Expr)
[substenv : {FiniteMap Var Expr} | | ]

SEM Root
| Root expr.substenv = @lhs.substenv

SEM Expr
| App fun.substenv = @lhs.substenv

app.substenv = @lhs.substenv
| Lam expr.substenv = delListFromFM @lhs.substenv @var.freevars
| Let loc.substenv = delListFromFM @lhs.substenv @decls.defvars

decls.substenv = @loc.substenv
expr.substenv = @loc.substenv

SEM Decls
| Cons hd.substenv = @lhs.substenv

tl.substenv = @lhs.substenv
SEM Decl
| Decl expr.substenv = @lhs.substenv
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Copy rules

I For inherited attributes, it is again possible to omit
uninteresting cases.

I One can define local variables. Local variables are
propagated in all directions with priority (i.e., the are
propagated upwards if they have the name of a
synthesised attribute, and downwards if they have the
name of an inherited attribute).

I If no local variable is available, a required inherited
attribute is propagated from the left hand side.



Performing a substitution

Of course, inherited attributes and synthesised attributes can
interact.

ATTR ∗ − Root
[ | | substituted : SELF ]

ATTR Root
[ | | substituted : Expr ]

ATTR Expr
| Var lhs.substituted = case lookupFM @lhs.substenv

@var.substituted of
Just expr→ expr
Nothing → Var @var.substituted



Generating a modified tree

I The SELF construct is another powerful built-in
mechanism to support generating a modification of the
original tree.

I A SELF attribute comes with default rules that reconstruct
the original tree.



Haskell: higher-order functions

I In functional languages functions are first-class values. In
short: you can treat a function like any other value.

I Functions can be results of functions.

(+) :: Int→ (Int→ Int)
(+) 2 :: Int→ Int
(+) 2 3 :: Int

I Functions can be arguments of functions.

twice :: (a→ a)→ (a→ a)
twice f x = f (f x)
twice ((+) 17) 8 = = 42
map :: (a→ b)→ ([a ]→ [b ])
map f [ ] = [ ]
map f (x : xs) = f x : map f xs



Catamorphisms

I A catamorphism is a function that computes a result out of
a value of a data type by

• replacing the constructors with operations
• replacing recursive occurences by recursive calls to the

catamorphism
I Since Haskell provides algebraic data types,

catamorphisms can be written easily in Haskell.
I Sythesised attributes can be translated into “catamorphic

form” in a straight-forward way.



Example translation

allvars Root :: Root→ [String ]
allvars Root (Root expr) = allvars Expr expr
allvars Expr :: Expr→ [String ]
allvars Expr (Var var) = allvars Var var
allvars Expr (App fun arg) = let fun allvars = allvars Expr fun

arg allvars = allvars Expr arg
in fun allvars∪ arg allvars

. . .
allvars Var :: Var→ [String ]
allvars Var (Ident name) = [name ]



Catamorphisms can be combined

I Several attributes: Several catamorphisms?
I Better: Write one catamorphism computing a tuple!
I Only one traversal of the tree, attributes can depend on

each other.



Translating “free variables”

SEM Expr
| Let lhs.freevars = (@expr.freevars∪@decls.freevars)

−@decls.defvars
SEM Decl
| Decl lhs.freevars = @expr.freevars -- overriding USE

lhs.defvars = @var.freevars

sem Expr :: Expr→ [String ]
sem Expr (Let decls expr) =

let (decls defvars, decls freevars) = sem Decls decls
expr freevars = sem Expr expr

in (expr freevars∪ decls freevars)
− (decls freevars)

sem Decl :: Decl→ ([String ], [String ])
sem Decl (Decl var expr) =

let var freevars = sem Var var
expr freevars = sem Expr expr

in (var freevars, expr freevars)



Catamorphisms can compute functions

I Inherited attributes can be realised by computing
functional values.

I In fact, a group of inherited and synthesised attributes is
isomorphic to one synthesised attribute with a functional
value.

I The final catamorphism for a type Type has type

sem Type :: Type→ Sem Type

where Sem Type is a type synonym for a functional type,
mapping all inherited attributes to the synthesised
attributes for Type:

type Sem Type = Inh1 → Inh2 → · · · → Inhm
→ (Syn1, Syn2, . . . , Synn)



Translating “substitution”

SEM Expr [substenv : {FiniteMap Var Expr}
| | substituted : SELF

freevars : [String ] ]
| Lam expr.substenv = delListFromFM @lhs.substenv @var.freevars
| Var lhs.substituted = case lookupFM . . .

type Sem Expr = FiniteMap Var Expr→ [String ], Expr

sem Expr :: Expr→ Sem Expr
sem Expr (Lam var expr) lhs substenv =

let (var freevars, var substituted)
= sem Var var lhs substenv

(expr freevars, expr substituted)
= sem Var var (delListFromFM lhs substenv var freevars)

in Lam var substituted expr substituted {- SELF default -}
sem Expr (Var var) lhs substenv =

let (var freevars, var substituted)
= sem Var var lhs substenv

in case lookupFM . . .



Implementation of UUAG

I Translates UUAG source files into a Haskell module.
I Normal Haskell code can occur in UUAG source files as

well as in other modules.
I UUAG data types are translated into Haskell data types.
I Attribute definitions are translated into one catamorphism

per data type, computing a function that maps the
inherited to the synthesised attributes of the data type.

I The catamorphism generated for the root symbol is the
entry point to the computation.

I UUAG copies the right-hand sides of rules almost literally
and without interpretation.

I all Haskell constructs are available, system is lightweight
I no type check on UUAG level; the generation process must

be understood by the programmer
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Haskell: lazy evaluation

I Function applications are reduced in “applicative order”:
First the function, then (and only if needed) the
arguments.

I Lazy boolean “or” function: True ∨ error "unreachable"
I Lazy evaluation allows dealing with infinite data

structures, as long as only a finite part is used in the end.

primes :: [Int ]
primes = sieve [2 . . ]
sieve :: [Int ]→ [Int ]
sieve (x : xs) = x : sieve [y | y← xs, y ‘mod‘ x 6= = 0 ]
take 100 primes

I As a consequence, the UUAG does not need to specify the
order in which attributes are evaluated.
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Chained attributes

I Often, attributes should be both inherited and synthesised
at the same time, traversing the whole tree, representing a
current state.

I Such attributes are called chained attributes.
I They are nothing special, but there is syntactic sugar for

them:

ATTR ∗ − Root [ | unique : Int | ]

is short for

ATTR ∗ − Root [unique : Int | | unique : Int ]

I The default copy rules perform a depth-first top-down
traversal from left to right.



Keeping an environment of type assumptions

ATTR ∗ − Root [ | env : FiniteMap Var Type
unique : Int
| self : SELF ]

SEM Root
| Root expr.env = fmToList ["const", parseType "a -> b -> a" ]

expr.unique = 0
SEM Expr
| Lam expr.unique = @lhs.unique + 1

expr.env = addToFM @lhs.env
(@var.self , tyVar @lhs.unique)

. . .



Depth-first traversal

DATA Root | Root Tree

DATA Tree | Leaf label : Int
| Node left : Leaf right : Leaf

ATTR Tree [ | counter : Int | dft : SELF ]
SEM Root
| Root tree.counter = 0

SEM Tree
| Leaf lhs.counter = @lhs.counter + 1

lhs.dft = Leaf @lhs.counter



Full copy rule

I For every node, the inputs are the inherited attributes of
the left hand side, and the synthesized attributes of the
children. Similarly, the outputs are the synthesized
attributes of the left hand side, and the inherited attributes
of the children.

I We define a partial order between attributes of the same
name: left hand side attributes are smallest, then the
children from left to right.

I When we must compute a synthesized USE or SELF
attribute, we combine the results of the children or
reconstruct the tree, respectively.

I Whenever we need an output, we first take it from a local
attribute of the same name.

I If there’s no local attribute, we look for the largest smaller
input attribute of the same name.



Full copy rule (contd.)

I The copy rules we have used before are special instances of
this general rule.

I For chained attributes, the rule specifies exactly the
depth-first traversal.



Breadth-first traversal

I A breadth-first traversal is not immediately covered by the
copy rules.

I Nevertheless, it can be realised with only slightly more
work (but making essential use of lazy evaluation!).

I Combinations of BF and DF traversal are often useful to
implement scope of entities.

I Basic Idea: Provide a list with initial counter values for
each level, return a list with final counter values for each
level.



Implementing BFT

DATA Root | Root Tree

DATA Tree | Leaf label : Int
| Node left : Leaf right : Leaf

ATTR Tree [ | levels : [ Int ] | bft : SELF ]
SEM Root
| Root tree.levels = 0 : @tree.levels

SEM Tree
| Node left.levels = tail @lhs.levels

lhs.levels = head @lhs.levels : tail (@right. · .levels)
| Leaf loc.label = head @lhs.levels

lhs.levels = (@loc.label + 1) : tail @lhs.levels
lhs.bft = Leaf @loc.label

I Note that this AG is circular.



Extending AGs

I As we have already seen, AGs can naturally be extended
with new attributes. We simply add a new attribute
definition and new semantic rules.

I We can, however, also extend the grammar, adding new
datatypes or new constructors to datatypes(!). The AG
system allows to group the rules in any way the
programmer likes.

DATA Expr
| Int Int
| Pair Expr Expr
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Conclusions

I Programming with UUAG is easy and fun.
I Application areas are compilers in the widest meaning of

the word.
I Used in Utrecht to implement GH, Helium, Morrow, and

EHC, all of which are of reasonable size.
I Available and stable.


