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Motivation

I Functional programmers naturally use data structures (such as
finite maps) to maintain program data.

I Normal data structures are not persistent – at the end of a
program session, all data is lost.

I Even if we serialize the whole data structure, we have to
read/write the entire data structure at once and hold
everything in memory in between.

I We could use a database, but then we have to convert
between the Haskell data structure and the database’s data
model.



This talk

A generic framework for library writers to define persistent
functional data structures.

Outline

I Datatypes as fixed points.

I Annotations and effects.

I Lifting operations to the annotated setting.

I A file-based storage heap.

I Persistent data structures.



Fixed points



Finite maps as binary trees

Similar to Haskell’s Data.Map library:

data Tree k v = Leaf
| Branch k v (Tree k v)

(Tree k v)

Running example:

myTree :: Tree Int Int
myTree = Branch 3 9 (Branch 1 1 Leaf

Leaf)
(Branch 4 16 (Branch 7 49 Leaf

Leaf)
Leaf)
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Making the recursive structure explicit

data Tree k v = Leaf
| Branch k v (Tree k v)

(Tree k v)

newtype µ f = In {out :: f (µ f)}
type Tree k v = µ (TreeF k v)
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Making the recursive structure explicit

data TreeF k v r = Leaf
| Branch k v r

r
deriving Functor

newtype µ f = In {out :: f (µ f)}
type Tree k v = µ (TreeF k v)

myTreef :: Tree Int Int
myTreef = branch 3 9 (branch 1 1 leaf

leaf)
(branch 4 16 (branch 7 49 leaf

leaf)
leaf)

leaf = In Leaf
branch k v l r = In (Branch k v l r)
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Annotations



Annotated fixed points

“Normal” fixed point:

newtype µ f = In {out :: f (µ f)}

Annotated fixed point:

type µα α f = µ (α f)

Identity annotation:

newtype Id f a = Id {unId :: f a}
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Annotated fixed points

“Normal” fixed point:

newtype µ f = In {out :: f (µ f)}
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Effectful annotations

We use annotations to attach effects to the folding and unfolding
of the fixed-point combinator:

class Monad m⇒ In α f m where
inα :: f (µα α f)→ m ( µα α f)

class Monad m⇒ Out α f m where
outα :: µα α f → m (f (µα α f))

The identity annotation has no effect:

instance In Id f Identity where
inα = return ◦ In ◦ Id

instance Out Id f Identity where
outα = return ◦ unId ◦ out
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Debug trace annotation

Same type as the identity annotation:

newtype Debug f a = D {unD :: f a}

This time, we attach an IO effect:

instance (Functor f,Show (f ()))⇒ In Debug f IO where
inα f = print ("In" , units f) >> return (In (D f))

instance (Functor f,Show (f ()))⇒ Out Debug f IO where
outα (In (D f)) = print ("Out", units f) >> return f

The function units instantiates the recursive positions with units:

units :: Functor f ⇒ f a→ f ()
units = fmap (const ())
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Building an annotated tree

Annotated binary trees:

type Treeα α k v = µα α (TreeF k v)

Monadic, but polymorphic in the annotation:

myTreeα :: In α (TreeF Int Int) m⇒ m (Treeα α Int Int)
myTreeα =

do l ← leafα
d← branchα 7 49 l l
e ← branchα 1 1 l l
f ← branchα 4 16 d l
branchα 3 9 e f

leafα = inα Leaf
branchα k v l r = inα (Branch k v l r)
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Monadic, but polymorphic in the annotation:
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Specializing to a particular annotation

myTreeD :: IO (Treeα Debug Int Int)
myTreeD = myTreeα

ghci> myTree_D

("in",Leaf)

("in",Branch 7 49 () ())

("in",Branch 1 1 () ())

("in",Branch 4 16 () ())

("in",Branch 3 9 () ())

{D (Branch 3 9 {D (Branch 1 1 {D Leaf} ...



Operations



Manipulating annotated trees

I Writing operations on annotated structures requires adding
and removing annotations.

I If we do not pay attention, all the code becomes monadic and
cluttered with maintaining the annotations.

I We therefore try to lift the recursion patterns, not the
operations themselves.



Catamorphism

type Algebra f r = f r→ r

cata :: Functor f ⇒ Algebra f r→ µ f → r
cata φ = φ ◦ fmap (cata φ) ◦ out

lookupALG :: Ord k⇒ k→ Algebra (TreeF k v) (Maybe v)
lookupALG k Leaf = Nothing
lookupALG k (Branch n x l r) = case k ‘compare‘ n of

LT → l
EQ→ Just x
GT→ r

lookup k = cata (lookupALG k)

Example:
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Example:

lookup 4 myTreef



Catamorphism

type Algebra f r = f r→ r

cata :: Functor f ⇒ Algebra f r→ µ f → r
cata φ = φ ◦ fmap (cata φ) ◦ out
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lookupALG k (Branch n x l r) = case k ‘compare‘ n of

LT → l
EQ→ Just x
GT→ r

lookup k = cata (lookupALG k)

Example:

lookupALG 4 (fmap (lookup 4) (out myTreef))
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cata :: Functor f ⇒ Algebra f r→ µ f → r
cata φ = φ ◦ fmap (cata φ) ◦ out
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lookupALG k (Branch n x l r) = case k ‘compare‘ n of

LT → l
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GT→ r
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Example:

lookupALG 4 (fmap (lookup 4) (Branch (3 9 . . . . . . )))



Catamorphism

type Algebra f r = f r→ r

cata :: Functor f ⇒ Algebra f r→ µ f → r
cata φ = φ ◦ fmap (cata φ) ◦ out

lookupALG :: Ord k⇒ k→ Algebra (TreeF k v) (Maybe v)
lookupALG k Leaf = Nothing
lookupALG k (Branch n x l r) = case k ‘compare‘ n of

LT → l
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Example:

lookupALG 4 (Branch (3 9 Nothing (Just 16)))



Catamorphism

type Algebra f r = f r→ r

cata :: Functor f ⇒ Algebra f r→ µ f → r
cata φ = φ ◦ fmap (cata φ) ◦ out

lookupALG :: Ord k⇒ k→ Algebra (TreeF k v) (Maybe v)
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lookupALG k (Branch n x l r) = case k ‘compare‘ n of

LT → l
EQ→ Just x
GT→ r

lookup k = cata (lookupALG k)

Example:

Just 16



Catamorphism with annotations

cata :: Functor f ⇒
Algebra f r→ µ f → r

cata φ = φ ◦ fmap (cata φ) ◦ out

(/) :: Monad m⇒ (b→ m c)→ (a→ m b)→ a→ m c
mapM :: (Traversable t,Monad m)⇒ (a→ m b)→ t a→ m (t b)

Note that the type of algebras is unchanged!



Catamorphism with annotations

cataα :: (Out α f m,Traversable f)⇒
Algebra f r→ µα α f → m r

cataα φ = return ◦ φ / mapM (cataα φ) / outα

(/) :: Monad m⇒ (b→ m c)→ (a→ m b)→ a→ m c
mapM :: (Traversable t,Monad m)⇒ (a→ m b)→ t a→ m (t b)
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Lookup with annotations

Same as before:

lookupALG :: Ord k⇒ k→ Algebra (TreeF k v) (Maybe v)
lookupALG k Leaf = Nothing
lookupALG k (Branch n x l r) = case k ‘compare‘ n of

LT → l
EQ→ Just x
GT→ r

Lookup now using cataα:

lookupα :: (Ord k,Out α (TreeF k v) m,Traversable (TreeF k v))⇒
k→ µα α (TreeF k v)→ m (Maybe v)

lookupα k = cataα (lookupALG k)



Building trees

The function fromSortedList is an anamorphism:

type Coalgebra f s = s→ f s

anaα :: (In α f m,Monad m,Traversable f)⇒
Coalgebra f s→ s→ m (µα α f)

anaα ψ = inα / mapM (anaα ψ) / return ◦ ψ

fromSortedList = anaα fromSortedListALG

Again, fromSortedListALG is annotation-agnostic:

fromSortedListALG :: Coalgebra (TreeF k v) [(k, v)]
fromSortedListALG [ ] = Leaf
fromSortedListALG xs =

let (l, (k, v) : r) = splitAt (length xs ‘div‘ 2− 1) xs
in Branch k v l r
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Heap



File-based storage heap

Linear list of blocks of binary data. Each block contains

I a used/free flag,

I a size,

I the payload as binary stream.

An in-memory allocation map is used for administration.

FU
LL

00 20 28

14 4
heap on disk

in-memory allocation map

FR
E

E

20 4
28 12

46 55

FR
E

E 12

FU
LL 3



Heap interface

Most important operations:

read :: Binary a⇒ Pointer a→ Heap a
write :: Binary a⇒ a → Heap (Pointer a)

Running a heap computation:

run :: FilePath→ Heap a→ IO a



Persistence



Pointer annotation

newtype Ptr f a = P {unP :: Pointer (f a)}

The associated effect is accessing the heap:

instance (Binary (f (µα Ptr f)))⇒ Out Ptr f Heap where
outα = read / return ◦ unP ◦ out

instance (Binary (f (µα Ptr f)))⇒ In Ptr f Heap where
inα = return ◦ In ◦ P / write



Persistent operations

We specialize to the pointer annotation:

type TreeP k v = µα Ptr (TreeF k v)

fromSortedListP :: [(Int, Int)]→ Heap (TreeP Int Int)
fromSortedListP = fromSortedList

Example:

fromSortedListP [(1, 1), (3, 9), (4, 16), (7, 49)]

branch
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branch
4, 16

branch
1, 1

branch
7, 49

leaf leaf leaf leaf leaf

p p p p  p p p p

16 14 15 

17 20 2119 18

13 14 15 16 17 18 19 20 21

In In In In In In In In In
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Using the system 1

BuildSquareDB.hs

main =
do run "squares.db" $

do p← fromSortedListP (map (λa→ (a, a ∗ a)) [1 . . 10])
storeRootPtr (p :: TreeP Int Int)

putStrLn "Database created."

storeRootPtr :: µα Ptr f → Heap ()



Using the system 2

LookupSquares.hs

main =
run "squares.db" $ forever $
do liftIO $ putStr "Give a number> "

num← Prelude.read<$> liftIO getLine
sqr ← fetchRootPtr >>= lookupP num
liftIO $ print (num :: Int, sqr :: Maybe Int)

fetchRootPtr :: Heap (µα Ptr f)



Using the system 3

$ ghc --make BuildSquareDB.hs

$ ghc --make LookupSquares.hs

...

$ ./BuildSquareDB

Database created.

$ ls *.db

squares.db

$ hexdump squares.db

0000000 54 68 69 73 20 69 73 20 6a 75 73 74 20 61 20 66

0000010 61 6b 65 20 65 78 61 6d 70 6c 65 21 21 21 21 0a

...

$ ./LookupSquares

Give a number> 9

(9, Just 81)

Give a number> 12

(12, Nothing)

^C

$ _



More

In the paper and/or the thesis:

I Details about modification functions such as insert.

I How we deal with laziness and IO.

I How to extend the framework to higher-order fixed points
(e.g., finger trees).

Still to do:

I Sharing.

I Garbage collection.

I Concurrency.
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Summary

Our framework allows you to:

I Define pure Haskell data structures.

I Generically annotate operations with effects.

I Save recursive data structures to the disk.

Unfortunately, you still have to:

I Abstract away from recursion using recursion patterns.

I Use the final operations in a monadic context.



The End



Modifying trees

The function insert is an apomorphism.

type ApoCoalgebra f s = s→ f (Either s (µ f))

apo :: Functor f ⇒ ApoCoalgebra f s→ s→ µ f
apo ψ = In ◦ fmap apo′ ◦ ψ
where apo′ (Left l) = apo ψ l

apo′ (Right r) = r

For every recursive position, we can decide if we want to continue
with a new value, or if we want to place a tree.



Defining insert

The function insert modifies a given tree:

insertALG :: Ord k⇒ k→ v→
ApoCoalgebra (TreeF k v) (Tree k v)

insertALG k v (In Leaf) =
Branch k v (Right (In Leaf)) (Right (In Leaf))

insertALG k v (In (Branch n x l r)) =
case compare k n of

LT→ Branch n x (Left l) (Right r)
→ Branch n x (Right l) (Left r)

insert :: Ord k⇒ k→ v→ Tree k v→ Tree k v
insert k v = apo (insertALG k v)

We have to be more explicit about what parts of the old tree can
be reused.



Partially annotated structures

data Partial α f a = New (f a)
| Old (µα α f)

type µα̂ α f = µα (Partial α) f



Endo-apomorphisms

type ApoCoalgebra f s = s→ f (Either s (µ f))

apo :: Functor f ⇒ ApoCoalgebra f s→ s→ µ f
apo ψ = In ◦ fmap apo′ ◦ ψ
where apo′ (Left l) = apo ψ l

apo′ (Right r) = r

type EndoApoCoalgebraα α f =
f (µα α f)→ f (Either (µα α f) (µα̂ α f))

endoApoα :: (OutIn α f m,Monad m,Traversable f)⇒
EndoApoCoalgebraα α f → µα α f → m (µα α f)

endoApoα ψ = outInα $ mapM endoApoα
′ ◦ ψ

where endoApoα
′ (Left l) = endoApoα ψ l

endoApoα
′ (Right r) = topIn r

topIn :: (In α f m,Monad m,Traversable f)⇒
µα̂ α f → m (µα α f)



Defining insert

No annotations:

insertALG :: Ord k⇒ k→ v→ ApoCoalgebra (TreeF k v) (Tree k v)
insertALG k v (In Leaf) =

Branch k v (Right (In Leaf)) (Right (In Leaf))
insertALG k v (In (Branch n x l r)) =
case compare k n of

LT→ Branch n x (Left l) (Right r)
→ Branch n x (Right l) (Left r)

With annotations:

insertALG :: Ord k⇒ k→ v→ EndoApoCoalgebraα α (TreeF k v)
insertALG k v Leaf =

Branch k v (make Leaf) (make Leaf)
insertALG k v (Branch n x l r) =
case k ‘compare‘ n of

LT→ Branch n x (next l) (stop r)
→ Branch n x (stop l) (next r)
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