Sebastiaan Visser and Andres Loh
Utrecht University

September 26, 2010

Motivation

» Functional programmers naturally use data structures (such as
finite maps) to maintain program data.

» Normal data structures are not persistent — at the end of a
program session, all data is lost.

» Even if we serialize the whole data structure, we have to
read /write the entire data structure at once and hold
everything in memory in between.

» We could use a database, but then we have to convert
between the Haskell data structure and the database's data
model.

A generic framework for library writers to define persistent
functional data structures.

» Datatypes as fixed points.

Annotations and effects.
Lifting operations to the annotated setting.

A file-based storage heap.

vV vV VvV VY

Persistent data structures.

Fixed points

Similar to Haskell's Data.Map library:

data Tree k v = Leaf
| Branch kv (Tree k v)
(Tree k v)

Similar to Haskell's Data.Map library:

data Tree k v = Leaf
| Branch kv (Tree k v)
(Tree k v)

Running example:

myTree :: Tree Int Int
myTree = Branch 39 (Branch 11 Leaf
Leaf)
(Branch 4 16 (Branch 7 49 Leaf
Leaf)
Leaf)

Branch
3,9

Branch
1,1

Branch
4,16

Branch

]]
Co) @) [P

data Tree kv = Leaf
| Branch kv (Tree k v)
(Tree k v)

data Treer kv r = Leaf
| Branchkvr
r
deriving Functor

data Treer kv r = Leaf
| Branchkvr
r
deriving Functor
newtype i f = In {out::f (uf)}
type Tree kv = (Treep k v)

data Treer kv r = Leaf
| Branchkvr
r
deriving Functor

newtype i f = In {out::f (uf)}
type Tree kv = (Treep k v)

myTree :: Tree Int Int
myTree = Branch 39 (Branch11 Leaf
Leaf)
(Branch 4 16 (Branch 7 49 Leaf
Leaf)
Leaf)

Making the recursive structure explicit

data Treer k v r = Leaf
| Branch kv r
r
deriving Functor

newtype p f = In {out::f (uf)}
type Tree kv = (Treep k v)

myTreer :: Tree Int Int
myTrees = branch 39 (branch 11 leaf
leaf)
(branch 4 16 (branch 7 49 leaf
leaf)
leaf)

leaf = In Leaf
branch kv Ir=In (Branch k v 1r)

@

Branch
1,1

@

Branch
4,16

(D)

(D)

® @ (’T_,

Branch

(In)

(In)

Annotations

“Normal” fixed point:

newtype ;. f = In {out:: f (1)}

“Normal” fixed point:
newtype ;. f = In {out:: f (1)}
Annotated fixed point:

type 1o af = p (af)

“Normal” fixed point:

newtype ;. f = In {out:: f (1)}
Annotated fixed point:

type o af = p (af)
Identity annotation:

newtype Id fa=1Id {unld::f a}

We use annotations to attach effects to the folding and unfolding
of the fixed-point combinator:

class Monad m = In o f m where
ing =f (paaf)=>m(poaf)

class Monad m = Out o f m where
outy t o af = m(f(ne af))

Effectful annotations

We use annotations to attach effects to the folding and unfolding
of the fixed-point combinator:

class Monad m = In o f m where
ing f (o af)=>m(peaf)

class Monad m = Out o f m where
outy t o af = m(f(ne af))

The identity annotation has no effect:

instance In Id f Identity where
in, =returnoln old

instance Out Id f Identity where
out,, = return o unld o out

Same type as the identity annotation:

newtype Debugfa=D {unD::fa}

Debug trace annotation

Same type as the identity annotation:
newtype Debug fa=D {unD::f a}
This time, we attach an 10 effect:

instance (Functor f, Show (f ())) = In Debug f 10 where
ing f = print ("In" ,units f) > return (In (D f))

instance (Functor f, Show (f ())) = Out Debug f 10 where
outy (In (D f)) = print ("Out", units f) > return f

The function units instantiates the recursive positions with units:

units :: Functor f = fa — f ()
units = fmap (const ())

Annotated binary trees:

type Tree, a kv = p, o (Treeg k v)

Building an annotated tree

Annotated binary trees:
type Tree, a kv =y, a (Treeg k v)
Monadic, but polymorphic in the annotation:

myTree, :: In o (Treep Int Int) m = m (Tree, « Int Int)
myTree, =
do | < leaf,
d < branch, 7491 |
e < branch, 11 1|1
f < branch, 416d |
branch, 39ef

leaf, = in, Leaf
branch, kv I r=in, (Branch kv Ir)

myTreep :: 10 (Tree, Debug Int Int)
myTreep = myTree,

ghci> myTree_D

("in",Leaf)

("in",Branch 7 49 OO ()

("in",Branch 1 1 ())

("in",Branch 4 16 (O ()

("in",Branch 3 9 ())

{D (Branch 3 9 {D (Branch 1 1 {D Leaf} ...

Operations

Manipulating annotated trees

» Writing operations on annotated structures requires adding
and removing annotations.

» If we do not pay attention, all the code becomes monadic and
cluttered with maintaining the annotations.

» We therefore try to lift the recursion patterns, not the
operations themselves.

type Algebrafr=fr—r

cata :: Functor f = Algebrafr — puf —r
cata ¢ = ¢ o fmap (cata ¢) o out

type Algebrafr=fr—r

cata :: Functor f = Algebrafr — puf —r
cata ¢ = ¢ o fmap (cata ¢) o out

lookuparg :: Ord k = k — Algebra (Treer k v) (Maybe v)

lookupaLg k Leaf = Nothing

lookuparg k (Branch n x | r) = case k ‘compare’ n of
LT — 1
EQ — Just x
GT —r

lookup k = cata (lookuparg k)

type Algebrafr=fr—r

cata :: Functor f = Algebrafr — puf —r
cata ¢ = ¢ o fmap (cata ¢) o out

lookuparg :: Ord k = k — Algebra (Treer k v) (Maybe v)

lookupaLg k Leaf = Nothing

lookuparg k (Branch n x | r) = case k ‘compare’ n of
LT — 1
EQ — Just x
GT —r

lookup k = cata (lookuparg k)

Example:
lookup 4 my Trees

type Algebrafr=fr—r

cata :: Functor f = Algebrafr — puf —r
cata ¢ = ¢ o fmap (cata ¢) o out

lookuparg :: Ord k = k — Algebra (Treer k v) (Maybe v)

lookupaLg k Leaf = Nothing

lookuparg k (Branch n x | r) = case k ‘compare’ n of
LT — |
EQ — Just x
GT —r

lookup k = cata (lookuparg k)

Example:
lookuparG 4 (fmap (lookup 4) (out myTreef))

type Algebrafr=fr—r

cata :: Functor f = Algebrafr — puf —r
cata ¢ = ¢ o fmap (cata ¢) o out

lookuparg :: Ord k = k — Algebra (Treer k v) (Maybe v)

lookupaLg k Leaf = Nothing

lookuparg k (Branch n x | r) = case k ‘compare’ n of
LT — |
EQ — Just x
GT —r

lookup k = cata (lookuparg k)

Example:
lookuparg 4 (fmap (lookup 4) (Branch (39 ...)

type Algebrafr=fr—r

cata :: Functor f = Algebrafr — puf —r
cata ¢ = ¢ o fmap (cata ¢) o out

lookuparg :: Ord k = k — Algebra (Treer k v) (Maybe v)

lookupaLg k Leaf = Nothing

lookuparg k (Branch n x | r) = case k ‘compare’ n of
LT — |
EQ — Just x
GT —r

lookup k = cata (lookuparg k)

Example:
lookuparg 4 (Branch (3 9 Nothing (Just 16)))

type Algebrafr=fr—r

cata :: Functor f = Algebrafr — puf —r
cata ¢ = ¢ o fmap (cata ¢) o out

lookuparg :: Ord k = k — Algebra (Treer k v) (Maybe v)

lookupaLg k Leaf = Nothing

lookuparg k (Branch n x | r) = case k ‘compare’ n of
LT — 1
EQ — Just x
GT —r

lookup k = cata (lookuparg k)

Example:
Just 16

cata :: Functor f =
Algebrafr—puf —r
cata ¢ = ¢ ofmap (cata ¢)oout

cata, :: (Out o f m, Traversable f) =
Algebrafr — po af —mr
cata, ¢ = return o ¢ < mapM (cata, ¢) < out,

(«) =Monadm=(b—mc)—(a—mb)—a—mc
mapM :: (Traversable t, Monad m) = (a —+ mb) - ta — m (tb)

Note that the type of algebras is unchanged!

Lookup with annotations

Same as before:

lookuparg :: Ord k = k — Algebra (Treer k v) (Maybe v)

lookuparg k Leaf = Nothing

lookuparg k (Branch n x | r) = case k ‘compare’ n of
LT — |
EQ — Just x
GT —r

Lookup now using catag:

lookupg :: (Ord k, Out « (Treer k v) m, Traversable (Treef k v)) =
k — pto o (Treeg k v) — m (Maybe v)
lookup,, k = cata,, (lookupaig k)

The function fromSortedList is an anamorphism:

type Coalgebrafs=s—fs

ana, :: (In o f m, Monad m, Traversable f) =
Coalgebrafs —s —m (uq o f)
ana, ¢ = in, < mapM (ana,) < return o ¢

Building trees

The function fromSortedList is an anamorphism:

type Coalgebrafs=s—fs

ana, :: (In a f m, Monad m, Traversable f) =
Coalgebrafs —s—m (uq af)
ana, ¥ = ing, < mapM (ana, v) < return o)

fromSortedList = ana,, fromSortedListp g
Again, fromSortedLista| ¢ is annotation-agnostic:

fromSortedListaLg :: Coalgebra (Treer k v) [(k,V)]
fromSortedLista g [] = Leaf
fromSortedListp g xs =
let (I, (k,v) : r) = splitAt (length xs ‘div' 2 — 1) xs
in Branch kv Ir

Heap

File-based storage heap

Linear list of blocks of binary data. Each block contains

» a used/free flag,
> a size,
» the payload as binary stream.

An in-memory allocation map is used for administration.

14

—— G5

o n n
o o @
114 24| |32 13
heap on disk
T T
8 4 |8i12
1 1

in-memory allocation map

Most important operations:

read :: Binary a = Pointer a — Heap a
write :: Binary a = a — Heap (Pointer a)

Running a heap computation:

run :: FilePath — Heapa — 10 a

Persistence

newtype Ptr f a = P {unP :: Pointer (f a)}
The associated effect is accessing the heap:

instance (Binary (f (yq Ptrf))) = Out Ptr f Heap where
out, = read < return o unP o out

instance (Binary (f (i Ptrf))) = In Ptr f Heap where
ing = returnolnoP < write

We specialize to the pointer annotation:
type Treep kv = i, Ptr (Treer k v)

fromSortedListp :: [(Int, Int)] — Heap (Treep Int Int)
fromSortedListp = fromSortedList

We specialize to the pointer annotation:
type Treep kv = i, Ptr (Treer k v)

fromSortedListp :: [(Int, Int)] — Heap (Treep Int Int)
fromSortedListp = fromSortedList

Example:
fromSortedListp [(1,1),(3,9), (4,16), (7,49)]

BuildSquareDB.hs

main =
do run "squares.db" $
do p <+ fromSortedListp (map (Aa — (a,a*a)) [1..10])
storeRootPtr (p :: Treep Int Int)
putStrLn "Database created."

storeRootPtr :: i, Ptr f — Heap ()

LookupSquares.hs

main =
run "squares.db" $ forever $
do liftlO $ putStr "Give a number> "
num < Prelude.read <$ > liftlO getLine
sqr < fetchRootPtr == lookupp num
liftlO $ print (num :: Int, sqr :: Maybe Int)

fetchRootPtr :: Heap (pq Ptr f)

Using the system 3

$ ghc --make BuildSquareDB.hs
$ ghc --make LookupSquares.hs

$./BuildSquareDB

Database created.

$ 1s *.db

squares.db

$ hexdump squares.db

0000000 54 68 69 73 20 69 73 20 6a 75 73 74 20 61 20 66
0000010 61 6b 65 20 65 78 61 6d 70 6¢c 65 21 21 21 21 Oa

$./LookupSquares
Give a number> 9

(9, Just 81)

Give a number> 12
(12, Nothing)

~C

$ _

In the paper and/or the thesis:
» Details about modification functions such as insert.
» How we deal with laziness and 10.

» How to extend the framework to higher-order fixed points
(e.g., finger trees).

More

In the paper and/or the thesis:
» Details about modification functions such as insert.
» How we deal with laziness and 1O.
» How to extend the framework to higher-order fixed points
(e.g., finger trees).

Still to do:
» Sharing.
» Garbage collection.

» Concurrency.

Summary

Our framework allows you to:
» Define pure Haskell data structures.
» Generically annotate operations with effects.

» Save recursive data structures to the disk.

Unfortunately, you still have to:
» Abstract away from recursion using recursion patterns.

» Use the final operations in a monadic context.

The End

Modifying trees

The function insert is an apomorphism.

type ApoCoalgebra f s =s — f (Either s (u f))

apo :: Functor f = ApoCoalgebrafs —s— uf
apo ¢ = In o fmap apo’ o ¢
where apo’ (Left 1) =apo |
apo’ (Rightr) =r

For every recursive position, we can decide if we want to continue
with a new value, or if we want to place a tree.

Defining insert

The function insert modifies a given tree:

insertalg:Ordk =k — v —
ApoCoalgebra (Treeg k v) (Tree k v)
insertaLg k v (In Leaf) =
Branch k v (Right (In Leaf)) (Right (In Leaf))
insertaLg k v (In (Branch nx1r)) =
case compare k n of
LT — Branch n x (Left 1) (Right r)
_ — Branch n x (Right I) (Left r)

insert : Ordk = k - v — Treekv — Tree k v
insert k v = apo (inserta.c k v)

We have to be more explicit about what parts of the old tree can
be reused.

data Partial o f a = New (f a)
| Old (pa af)

type 15 o f = p, (Partial @) f

Endo-apomorphisms

type ApoCoalgebra f s =s — f (Either s (i f))

apo :: Functor f = ApoCoalgebrafs —s— uf
apo ¢ = In o fmap apo’ o ¢
where apo’ (Left 1) =apo ¢ |
apo’ (Rightr) =r

type EndoApoCoalgebra, a f =
f (1o af) — f (Either (uo o f) (ug af))

endoApo,, :: (Outln « f m, Monad m, Traversable f) =
EndoApoCoalgebra, af — o af — m (o af)
endoApo,, 1 = outln, $ mapM endoApo,’ o v
where endoApo,,’ (Left |) = endoApo, ¥ |
endoApo,’ (Right r) = topln r
topln :: (In a f m, Monad m, Traversable f) =
pa o f = m (g af)

Defining insert

No annotations:

insertar g :: Ord k = k — v — ApoCoalgebra (Treer k v) (Tree k v)
insertar g k v (In Leaf) =
Branch k v (Right (In Leaf)) (Right (In Leaf))
insertarg kv (In (Branch nx1r)) =
case compare k n of
LT — Branch nx (Left 1) (Rightr)
— Branch n x (Right I) (Left r)

With annotations:

insertarg :: Ord k = k — v — EndoApoCoalgebra, a (Treer k v)
inserta g k v Leaf =
Branch k v (make Leaf) (make Leaf)
inserta g kv (Branchnx1r) =
case k ‘compare' n of
LT — Branch n x (next I) (stop r)
_ — Branch nx (stop I) (next r)

	Fixed points
	Annotations
	Operations
	Heap
	Persistence
	The End

