
A Principled Approach to Version Control

Andres Löh1, Wouter Swierstra2, and Daan Leijen3

1 University of Bonn
loeh@informatik.uni-bonn.de

2 University of Nottingham
wss@cs.nott.ac.uk

3 Microsoft Research
daan@microsoft.com

Abstract. Version control systems are essential for managing the dis-
tributed development of large software projects. We present a formal
model for reasoning about version control. In particular, we give a gen-
eral definition of patch. Patches abstract over the data on which they
operate, making our framework equally suited for version control of ev-
erything from highly-structured XML files to blobs of bits. We model
repositories as a multiset of patches. The mathematical definitions of
patches and repositories enable us to reason about complicated issues
such as conflicts and conflict resolution.

1 Introduction

Version control systems tackle a real problem: how should we manage distributed
development? Modern software projects frequently require multiple developers,
based at different locations, editing thousands of files simultaneously. Manual
revision control is simply no longer an option.

Early version control systems were often simple tools capable of tracking the
revisions of a single text file. In the last twenty years, however, version control
systems have evolved into complex programs managing huge source trees with
multiple branches.

Despite this rapid development, version control systems have remained rather
ad-hoc. Tools are designed and refined to solve perceived problems with little
regard for fundamental issues. As a result, programmers dread performing com-
plex operations on a repository, such as merging branches or resolving conflicts.
These operations can be both unwieldy and unpredictable.

This paper aims to give a precise, mathematical description of the version
control problem and different version control systems. We introduce the prob-
lem by formalizing a simple version control system for unstructured binary files
(Section 2). We generalize this example and give a precise definition of patches
and repositories (Section 3). Building on this, we introduce a few extensions to
our core model such as directory structure, tagged versions, and patch meta-
data (Section 4). Using our model, we can accurately predict when conflicts may
arise and how they may be resolved (Section 5). We believe that this work may

R1 R2

F1 F2

X1 X2

addition of patches

patch applications

user modifications

interpretation observation

interpretation observation

repositories

internal representation

external representation

Fig. 1. Representation of repositories

lay the groundwork for reasoning about version control, and ultimately come up
with better and more predictable systems.

Terminology

A version control system manages repositories. A repository can consist of any-
thing from single file to a complete source tree. In addition to this current rep-
resentation of its state, a repository contains history. Each repository’s internal
state is the result of several patches. A patch is a logically connected collection
of operations that changes the state of a repository.

The state of a repository exists on two different levels. We shall refer to
the actual files and directories on disk as the external representation. Version
control systems also have an internal representation, or abstract model capturing
information of interest about the files in the repository.

Of course, there is a relationship between a repository and its internal and
external representation. When a user changes a file, that change must percolate
into a system’s internal representation and ultimately result in the generation
of a new patch – a process we shall refer to as observation. Conversely, when a
user pulls in changes from another repository, these patches must somehow be
interpreted as changes to the files on disk. The internal representation typically
fulfills certain invariants that ensure that it can indeed be interpreted in the file
system. This relationship is shown in Figure 1. In this paper, we will not deal
with the external representation or observation. Instead, we focus on the internal
representation and how to apply patches. The interpretation of the internal
representations we give is usually obvious. Observation, on the other hand, will
usually require tool support: a user’s changes to the file system cannot always be
uniquely associated with a single patch. In such cases, the user might be asked
to provide additional information to help the tool produce the correct patches.

One important selling point of our theory is that it abstracts over internal
representations. Different version control systems serve different purposes: some
manage source files on a line-by-line basis; others manage structured XML files;

others yet again may simply manage binary data. Any underlying theory must
be capable of dealing with each and every one of these potential design choices.

Patches can be moved between repositories, but this may lead to conflicts.
Sometimes, a move of one patch will imply the move of several dependent patches
in order to prevent a conflict. On other occasions, resolving conflicts will require
user interaction.

Many other notions usually found in version control systems are not part
of our core model. We do not distinguish between centralized and distributed
version control systems. We also do not have any specific treatment of branches
or even projects. In principle, any patch can be moved freely between any two
repositories; heedlessly doing so will often result in conflicts. Some version control
systems may maintain additional policies to relate specific repositories. Such
policies are specific to a version control system and by no means fundamental
to any theory of version control.

2 Managing binary files

To illustrate the concepts of our theory, we give a precise description of a simple
version control system capable of managing binary files. We do not pretend that
this system will be of much practical use, but it nicely illustrates the fundamental
issues involved. In later sections, we will extend it incrementally into a full-
fledged system handling text files, directory structure and file renames.

If we want to formalize such a version control system, we must begin by
defining what a repository is. This is an important question: should we really
construct a complete formal model of files, directories, permissions, and owner-
ship? Clearly it would better to build a more abstract internal representation
that captures the information we are interested in, but no more than that. This
motivates the following model of repositories.

2.1 Repository

We assume there is a set F of all valid file names. We consider the contents of a
file to be simply a sequence of bits, simply denoted by Bits. We write empty to
denote the empty bit sequence. We use a single predicate to state information
about our repository: f = c states that the file the file f has contents some
sequence of bits c. We can now model the state of the repository (its internal
representation) as a set of such predicates.

Not every set of predicates forms a valid repository. We require that the
following invariant holds for any internal representation X :

∀(f ∈ F).∃61(c ∈ Bits).(f = c) ∈ X .

This invariant ensures that every file that exists has uniquely determined con-
tents. A newly created repository is represented by an empty set.

2.2 Operations on the repository

Now we have fixed our notion of repository, we can begin to define operations
that somehow change the repository. In particular, we consider the following
three operations on repositories:

– adding an empty file to the repository,
– removing an existing file from the repository,
– and updating the contents of a file in the repository.

We can now define how these operations affect the internal representation of the
repository:

add f r = r ∪ {f = empty}
remove f c r = r \ {f = c}
replace f c d r = (r \ {f = c}) ∪ {f = d } .

There are, however, some real problems with blindly applying these functions
to a repository. The behavior of a version control system can become a bit
surprising. For instance, suppose we try to add a file to a repository that already
exists. The result of doing so, would break the repository invariants we described
above! Similarly, deleting a file that does not exist, does not change anything –
yet somehow the user should be warned that such an operation is a bit dubious.
Clearly some patches do not make sense in every repository. This motivates a
more advanced model of patches.

A patch p = S 7−E→ T consists of a triple of sets S , E , and T . We shall refer
to S as the source of p and T as its target. The notation for patches is intended
to suggest an interrupted arrow from S to T carrying additional information.
Intuitively, such a patch removes the source S from the repository and adds the
target T – hence the arrow-like notation. To apply such a patch to a repository,
the set S must already be present in the repository; conversely, the set T \ S
must be absent – the patch should not try to add data that is present after
removing S .

The set E , called the extension of p, is a bit more subtle. We require E to
be a superset of S and T – in many cases, S ∪ T will in fact be equal to E .
The extension, however, may contain points beyond S and T that are somehow
affected by the patch. Such points must be absent in the representation when
we apply the patch, and are guaranteed to be absent after the application. They
might be required to ensure that applying the patch will maintain the repository
invariants, or the might reserve space for temporary values that are created, but
also removed again by the patch. We shall give a more precise definition of a
patch in Section 3. For now, we use this informal definition to give a better
definition of our operations.

Creating files A file with name f ∈ F can be created using a patch:

create f = ∅ 7−{f = c | c ∈ Bits }→ {f = empty} .

The target of the resulting patch indicates that files are always initially created
without contents. The source of the patch is the empty set: creation of files does
not rely on any current contents of the repository. It is, however, important
that the file we are about to create does not yet exist. This is ensured by the
extension: remember that any point in the extension outside the source must
be absent from the repository to apply a patch. Because files cannot be added
twice, the invariant of the internal representation is maintained by the patch.

We will occasionally abbreviate sets using an asterisk wild-card. When the
type of a variable can be inferred from the context, we may write for instance

create f = ∅ 7−{f = ∗}→ {f = empty} .

Different occurrences of ∗ within a set are independent.

Deleting files We can delete a file as follows:

delete f c = {f = c} 7−{f = c}→ ∅ .

Note that delete is parameterized over the final contents of the file c. We require
the file f to exist prior to removal.

This operation exemplifies a common situation: the extension does not have
points outside the source and target. In that case, we will sometimes write
patches using the following shorthand:

delete f c = {f = c} 7→ ∅ .

We omit the extension, as it can be inferred from the source and target.

Modifying files We can modify the contents of an existing file using:

modify f c d = {f = c} 7→ {f = d } .

Both the old and the new contents of the binary file are parameters of the patch.
It is easy to see that patches given by create, delete and modify maintain the

invariant of the internal representation that we specified above.
We conclude this section with one last example. We create a file "foo", set

its contents to the bit sequence 010, and remove it again, with the following
sequence of patches:

create "foo",modify "foo" empty 010, delete "foo" 010 .

The internal representation resulting from these three patches is the empty set
again. A repository will record and remember all patches that are applied to it,
thereby recording sufficient information to reproduce its entire history.

Consider Figure 1 again. Although we have discussed the top two layers of
that diagram, we have not mentioned the external representation. An implemen-
tation of a version control system must map the internal representation to an
actual file system; conversely, it must also observe changes made by the user

to files in terms of the internal representation, and ultimately in terms of new
patches. For instance, if the user creates another file "bar", the system should
observe the change by adding a patch create "bar".

There are several variations and extensions of the patches defined above. We
will discuss many additional design choices in Section 4.

3 Formal model

While the management binary files makes an interesting example, the notions we
used still need to be defined rigorously. This section presents the core definitions
of patches, patch application, and patch composition that lie at the heart of our
theory.

Definition 1 (patch). A patch

f = S 7−E→ T

is a triple of sets, S , E and T , where S ⊆ E and T ⊆ E . We say that src f = S
is the source of f and that tgt f = T is the target of f . Finally, we refer to
ext f = E as the extension of f .

For each set X with X ∩ E = S , we define:

f (X) := S 4X 4 T

and say that f is applicable to X and that f (X) is the result of applying f
to X . We write S 7→ T if E = S ∪ T .

A few remarks are in order. The operation4 denotes the symmetric difference
of two sets, i.e., A4B = (A\B)∪(B\A). We could have defined patch application
equivalently as f (X):=(X \S)∪T , but symmetric difference has nicer properties
in calculations.

For a patch S 7−E → T We do not require S ∩ T = ∅. Sometimes, a patch
requires something to be present in the representation, but does not modify or
remove it. An example is creating a file in a hierarchical directory structure as
shown in Section 4.2, where the parent directory is required to exist before and
after the application of the patch.

Patches in isolation are not terribly useful. Now we have given a formal
definition of patches, we can define how individual patches can be composed.

Definition 2 (composition of patches). Two patches f = S1 7−E1→ T1 and
g = S2 7−E2→ T2 can be composed if and only if

(E1 ∩ (S2 \ T1)) = ((T1 \ S2) ∩ E2) = ∅ .

We then define

g · f := (S1 ∪ (S2 \ T1)) 7−(E1 ∪ E2)→ ((T1 \ S2) ∪ T2)

to be the composition of f and g .

It is easy to see that g · f is a well-defined patch. For instance, we need to check
that (S1∪(S2\T1)) ⊆ E1∪E2 – but this follows immediately from the fact that f
and g are well-defined patches. Our functional notation of patches is purposefully
suggestive. The following is special case of function composition:

Corollary 3. Any patches of the form f = S 7−E1→ T and g = T 7−E2→ U
are composable and g · f = S 7−(E1 ∪E2)→ U . In particular, if f = S 7→ T and
g = T 7→ U , then g · f = S 7−S ∪ T ∪U → U .

The following results show that our definition of composition behaves more
or less like function composition.

Lemma 4. Suppose f = S1 7−E1→ T1 and g = S2 7−E2→ T2 are composable
patches and g · f is applicable to a set X . Then f is applicable to X , and g is
applicable to f (X), and (g · f) (X) = g (f (X)).

The proof is not very deep, but fairly technical; we have included it in Ap-
pendix A for the sake of completeness.

Composition is associative and even commutative under suitable conditions.
These results are not only of theoretical interest: we will make grateful use of
them in our exposition on repositories and conflicts.

Corollary 5. For any suitably composable patches f , g, and h, we can show
that f · (g · h) = (f · g) · h. Put succinctly, composition is associative.

Similarly, if patches f and g are composable in both directions and g · f and
f · g are both applicable to X , then (g · f) (X) = (f · g) (X). In other words,
patch composition is commutative for sufficiently composable patches.

Proof. Both these properties follow immediately from the associativity and com-
mutativity of symmetric difference. ut

Finally, we have a notion of inverse and identity patch. These patches are
also of practical use, as we shall see in the coming sections.

Definition 6 (inverse and identity of patches). For any patch f = S 7−E→
T , we call inv f := T 7−E→ S the inverse of f . A patch idA,E = A 7−E→ A is
called an identity patch. We write idA for A 7→ A.

Lemma 7. For any patch f = S 7−E→ T, we have

inv f · f = idS ,E and f · inv f = idT ,E .

Proof. Obvious from the definitions of inverse and composition. ut

4 Beyond binary files

The previous section covered the mathematical core of our theory. Before we
continue down that road, let us try to apply what we have so far. In this section,
we present several concepts and examples that extend upon the simple version
control for binary files we introduced in Section 2, and explain how all of them
can be expressed in terms of patches.

4.1 Renaming files

So far we have considered binary files with fixed names. We could create, modify,
and remove them. If we wanted to transfer the contents of one file to another,
we would have to create a new file and set its contents to that of the old file.
But by then, all connection between the two files is lost.

We can do better and assign names to files in such a way that files can be
renamed easily. We store the name of a file in the repository using an entry of
the form f is n. The function

create f n = ∅ 7−{f = ∗, ∗ is n }→ {f = empty, f is n }

results in a patch that creates the file f with initial name n. Recall that {f =
∗, ∗ is n } serves as an abbreviation for the set {f = c | c ∈ Bits } ∪ {g is n | g ∈
F }.

Note that f is now a purely internal label that identifies the file uniquely,
whereas n is an externally visible name of the file that can be modified by the
user at any time. As such, the name is not much different from the contents: it
is a property of the file that can be changed. Indeed, changing the name of a file
is achieved using a function very similar to the modify function:

rename f n1 n2 = {f is n1} 7→ {f is n2} .

Most of the time when we introduce new types of patches we have to adapt the
invariants of our internal representation. We require that every file has just one
name and that no two files of the same name occur in a representation X :

∀(f ∈ F).∃61(n ∈ Names).{f is n } ∈ X
∀(n ∈ Names).∃61(f ∈ F).{f is n } ∈ X .

4.2 Directory hierarchy and file moves

The next step is to add a hierarchical directory structure to our repository. We
treat directories as special files, and write f = dir to indicate that the label f
refers to a directory rather than to a regular file. Let DBits = Bit ∪ {dir}. If
we write {f = ∗}, it is now an abbreviation for {f = c | c ∈ DBits } Directory
creation is then fairly straightforward:

create f n c = ∅ 7−{f = ∗, ∗ is n }→ {f = c, f is n }
createDir f n = create f n dir
createFile f n = create f n empty .

Directory creation is like file creation, only that we mark the file as a directory
immediately rather than to assign empty contents.

Unfortunately, there is no way to store contents in these directories yet. To
add tree structure, we extend the is predicate to read f is d /n, associating with
each file not only a name n, but also the directory label d where it is located.

In particular, we can model nested directories, as directory and file labels share
the same namespace.

Everything is now created within a specific directory, hence we refine create:

create f d n c =
{d = dir} 7−{f = ∗, ∗ is d / n, d = dir}→ {d = dir, f = c, f is d / n } .

Creating a new file requires the target directory d to exist already. Where do
we place the initial file? We assume that a special root directory is in the ini-
tial repository via an entry root = dir. The name and the location of the root
directory are immutable.

We can move a file to a new location and possibly a new name using:

move f d1 n1 d2 n2 = f is d1 / n1 7→ f is d2 / n2 .

Of course, we also need a whole bunch of new or modified invariants. File names
must now only be unique within a directory. A file can be a directory or a regular
file, but not both. The parent of a file is always a directory. Every file but root
has a location and a name, and the location must be an existing directory. Due
to the last invariant, we must make sure that we only delete empty directories:

removeDir d = {d = dir} 7−{∗ is d / ∗, d = dir}→ ∅ .

4.3 Line-based text files

Most version control systems are targeted at text files. They typically allow
operations such as the insertion or the deletion of text on a line-by-line basis.

In contrast to most version control systems, we choose not to deal with
absolute line numbers. Instead we assign internal labels to lines, which we chain
together as a linked list. This is actually quite similar to how we have dealt with
file names and directories. We try to specify the intent of a patch as closely as
possible in its definition.

For the sake of simplicity, we ignore file names and the directory hierarchy
again for the rest of this section. We restrict ourself to managing the contents of
a single file. Instead of representing the contents of a file using an entry of the
form f = c, we now use entries of the form l = c to assign contents to a single
line l . An entry of the form l → l ′ says that line l ′ follows line l . If the first line
of f is l , we simply write f → l . If f is empty, we write f → eof, using eof as a
special line label to mark the end of a file.

We now describe how to insert a new empty line, how to modify the contents
of a line, and how to delete an empty line:

insert l lb la = { lb → la } 7−{ l = ∗}→ { lb → l , l → la , l = empty}
modify l c d = { l = c} 7→ { l = d }
delete l lb la = inv (insert l lb la) .

Note that an insertion or deletion records the labels of the surrounding lines,
but not their contents. It is therefore possible to move a patch that inserts a line

into another repository even if in that repository the surrounding line has been
modified. Of course, we should revisit our repository invariants. We refrain from
doing so for the sake of brevity. This behaviour is, of course, once again only one
point in the design space. It is easily possible to define all sorts of variations on
the above patches.

Instead of further complicating the file system structure, we will now inves-
tigate some more abstract concepts often found in version control systems.

4.4 Logically connected changes

Often, changes to a repository only make sense in a group. The logic at the
foundation of such a group is usually beyond a version control system to grasp
and can only be specified by the user: all the changes might correspond to a new
feature or bug-fix. While an individual patch might break the build, the set of
patches as a whole work perfectly. We can model such a connection by allowing
one patch to be defined as a composition of more basic patches p1, . . . , pn . We
denote such a compound patch simply as (pn · . . . · p1). A compound patch is
treated as atomic: under no circumstances should any individual patch be applied
without applying the entire compound patch.

4.5 Tags

A tag records the state of a repository at a certain time. It can be used as an easy
way to identify a certain version of particular interest. In our model, we can tag
the contents of a repository with internal representation X using the patch idX .
The tag does not change the representation, but merely earmarks a certain state.

4.6 Patch meta-data

A patch may store more information than just the changes in the file structure.
Users may be interested in a patch’s author, time of creation, or some form of
documentation. We refer to all such additional information meta-data. Rather
than fix the type of meta-data, we assume that there is a set M of all valid
meta-data. We do not further specify its structure here, but leave that to the
designers of a specific version control system.

There are several different ways to incorporate meta-data in our model. Meta-
data can be part of the repository as an element of the form meta m with m ∈ M .
Any patch can then be extended to produce a piece of meta-data using

addmeta p m = src p 7−ext p ∪ {meta m }→ tgt p ∪ {meta m } .

The function addmeta can be used on any patch, in particular also on compound
patches as introduced earlier. A policy could then enforce that a repository
should only contain patches that provide meta-data. Meta-data can also serve
to distinguish otherwise identical patches.

4.7 Reverting changes

One of the main purposes of version control is the ability to return to a previous
version by undoing a modification that later turns out to be undesired. For this,
we make use of the fact that we require all patches to be invertible.

Note that we will distinguish undoing a patch p by deleting it from the
repository, and undoing a patch p by adding inv p to the repository. The former
reverts to a previous state and forgets everything about the change we remove,
the latter also returns to the previous change, but keeps information about the
patch in the repository. In the next section, we will formally define a repository
as a multiset of patches, and then we can make this distinction precise.

4.8 Summary

We have seen how our theory of patches serves to express a multitude of concepts.
Adding a new concept usually requires to adapt the entries we can have in our
sets, and also to establish new invariants. We always strive to reflect the intent
of patches as closely as possible in their representation. In particular, we have
seen that our model is expressive enough to deal with line-based text files in
a hierarchical directory structure. The same techniques, however, can also be
applied to model other structures, such as files of structures formats that allow
a different set of operations than the insertion and deletion of lines.

5 Communicating changes

So far we have defined what patches are and how they are created. The real fun
starts once patches are communicated between repositories. Version control is
not just about keeping track of a version history of documents, but also about
communicating your changes to others.

5.1 Repositories

Before we can discuss communication between repositories, we need to define
what a repository is.

Definition 8 (repository). A repository is a multiset of patches. The empty
set defines the empty repository which we denote ∅.

There are a few interesting points to note about this definition. First of all, we
allow the same patch to occur more than once. Restricting ourselves to a set
would, for instance, disallow the multiset {p, inv p, p} where you change your
mind about whether or not the patch p is desirable or not.

Our definition of repository does not record the order in which patches are
performed. This may seem awkward – patches in a repository should have a
natural, chronological order. An important observation, however, is that the
order does not matter:

Definition 9 (consistent). A repository R is consistent if it can be written
as {p1, . . . , pn } such that (pn · . . . ·p1) is defined and applicable to the empty set.
We call X := (pn · . . . · p1) (∅) the internal representation of the repository.

Corollary 10. The empty repository is consistent and has ∅ as its internal
representation.

Corollary 11. The internal representation of a repository is well-defined, i.e. if
π is a permutation of {1, . . . ,n } and if c1:=(pn ·. . .·p1) and c2:=(pπ (n)·. . .·pπ (1))
are both defined and applicable to the empty set, then c1 (∅) = c2 (∅).

Proof. This follows directly from the commutativity of composition. ut

In other words, whenever multiple orders of patches are valid, they all lead to the
same result. This fact is important: we can consider repositories with the same
patches to be equal, regardless of the order in which these patches were applied.

5.2 Moving patches

Interesting interactions occur when we want to move changes from one repository
into another. Taking the perspective of the target repository, we say that we are
pulling patches from another repository. Some version control systems place
restrictions on which repositories may communicate. Such policies keep different
repositories in step, but can be too restrictive. We shall describe the general
case, leaving such restrictions to the discretion of specific systems.

All patches that are in the source repository, but not in ours, are eligible for
pulling. If we are interested in a multiset of patches P , there are three options:

– moving P to our repository keeps our repository consistent,
– moving P creates an inconsistent repository, but we can pull a larger multiset

P ′ in order to maintain consistency,
– all supersets of P that we could pull from the other repository would create

an inconsistent repository.

The first two cases are covered by the following definition of a pull:

Definition 12 (pull). Given two consistent repositories R and S , a pull of
patch multiset P ⊆ R to S consists of a set P ′ ⊆ (R \ S) such that P ⊆ P ′ and
S ∪ P ′ is a new consistent repository.

This definition of pull is still a bit too liberal: if P ′ is a pull, there may be many
supersets of P ′ that are also pulls. This motivates the following definition:

Definition 13 (minimal pull). A pull M of some patch multiset P is said to
be minimal if there is no pull N of P where N ⊂ M .

There may, however, be more than one minimal pull of a patch. In practice, a
version control system should only pull in additional patches to resolve conflicts
if there is a unique minimal pull. If there more than one minimal pull, the

user should be given the opportunity to further specify which pull should be
performed.

The third case of above list – no successful pull involving the multiset we
are interested in exists – is what we usually call a conflict. Conflicts must be
resolved by inventing additional patches. Again, a version control system will
usually involve the user in this process, and there is a lot of freedom in what to
do.

Definition 14 (conflict resolution). If a patch multiset P causes a conflict
when pulled to repository R, the resolution of P consists of a set of patches M
such that P ⊆ M and R ∪M is consistent.

A resolution can either undo the pulled change completely, or undo some change
in the target repository that was responsible for the conflict, or a combination
of the two.

It is beyond the scope of this paper to discuss the algorithmic aspects or
the user interface of communicating changes. It is relatively difficult to find
minimal pulls or even determine conflicts in the normal case. Therefore, most
actual version control systems impose certain restrictions on their repositories
or use knowledge about the internal representations in order to perform these
operations efficiently.

6 Related work and Discussion

Despite the large number of version control systems, most literature [2, 6, 7, 10,
13, 14] consists of manuals or technical documentation. There is surprisingly
little work on version control in the scientific community. Existing work tends to
focus on describing version control’s place in the software development process [5]
or describing specific instances of version control for structured documents [9].
When version control is mentioned in scientific literature, it is usually in the
context of the much wider field of software configuration management.

The theory we present is most related to distributed version control systems,
although classical centralized systems such as CVS [6] and Subversion [7] can
of course be described in our theory. After all, a centralized repository layout is
just a special case of a distributed layout where all client repositories are only
allowed to communicate with the central repository.

Our work is similar in spirit to recent work on file synchronization [4, 11,
12]. Unison, for instance, is a widely used tool for synchronizing files between
different machines. It exemplifies how a formal description of a problem can lead
to the development of better tools. We hope that version control could benefit
from a similar approach.

Darcs Darcs [8] is an advanced distributed version control system implemented
in Haskell. Among the vast number of current distributed version control sys-
tems, darcs is special for two reasons.

First, it was the first (and apparently still is the only) real-life version control
system that tried to focus on the intent of the user when it comes to patches. It
keeps track of how information is moved within a file and how files are moved and
renamed when merging changes. Because of the additional information available
during merges, incorrect results and some conflicts are avoided. Darcs encourages
so-called “cherry-picking”, the selection of specific patches from another repos-
itory that are pulled without unnecessary dependencies. Note that the concept
of intention-preservation is not new in general, but it is a first to see it put to
use in a version control system.

Second, darcs makes an attempt to formalize the theory behind the system
in a technical appendix, called the “theory of patches”. Here, the semantics of
darcs is described in a semi-formal way with references to quantum physics.

However, the theory is fairly sketchy. Some of the definitions are a bit vague,
some proofs are missing, and only a few properties are stated. In fact, it was the
vagueness of the theory of darcs that inspired our work: we wanted to develop a
theory that is general enough to describe darcs, in particular, but can serve as
a firm foundation for different flavours of version control systems.

In hindsight, it turns out that the fundamental difference between our system
and the approach of darcs is that while darcs focuses on the intent of a patch, it
leaves that intent implicit. Consider, for instance, line-based patches, represented
in darcs using absolute lines offsets, whereas we use symbolic line labels. A line
label does not change and uniquely identifies the logical line throughout its
lifetime, whereas line offsets change when insertions or deletions are made at
other places in the file. This leads to two disadvantages:

– it is difficult to say what exactly the intent of a line-based patch is, and
– the representation has to be adapted (i.e., the line numbers have to be re-

calculated) on several occasions.

A very practical disadvantage of having changing representations for one and
the same patch is that patches cannot be signed, a field where darcs lags behind
competitors such as monotone [3].

Conversely, in our theory the representation of patches is fixed. The free-
dom to choose a representation makes the intent of patches obvious. We give a
framework that allows us to incorporate several patch types with several internal
representations within the same theory. The number of patch types in darcs is
relatively fixed and adapting it would require a significant amount of work, both
as far as the theory is concerned as well as the implementation.

The advantages of darcs are, of course, on the practical side. The patches in
darcs all carry meta-data so that they can effectively be compared. Repositories
store patches in a certain order and cache a significant amount of information
to avoid unnecessary recomputation. Dependencies between patches are easy to
compute and stored explicitly. Because of dependencies, patches usually form
a directed acyclic graph. In the case of a pull, it is therefore easy to see if a
successful minimal pull containing the desired patches is possible or not.

We can express darcs’s patches in our model. Although we have not discussed
token replacement patches, they can be represented using the same techniques as

employed in Section 4. In turn, we hope that our theory could facilitate reasoning
about darcs conflicts, a continuous hot topic in the darcs community.

Other distributed version control systems There are several other distributed
version control systems that are currently in active use or development. While
nearly all these systems record changes in individual patches, they have restric-
tions when it comes to cherry-picking, compared to darcs.

At the basis of the vast majority of systems is a variant of a three-way line-
based merge algorithm that picks a common ancestor between two repositories.
This algorithm may be augmented with simple informal extensions designed to
handle file creations, deletions or renames, but fails to take further information
about the intent of a patch into account. Therefore, pulling specific changes from
other repositories can often lead to undesired results and requires a good under-
standing of the underlying algorithms. Codeville is noteworthy [1], as it makes
use of an extended merge algorithm that applies certain heuristics to disam-
biguate where a three-way merge does not have enough information. However,
while the algorithm may work well in practice, it is difficult to understand and
hard to reason about.

In contrast, our theory allows a represention of text files in such a way
that formally, merging is completely superfluous. When moving patches between
repositories, the important question is not how to merge, but only whether the
resulting repository is consistent. All the patches in a consistent repository that
relate to one file are connected when interpreting the internal representation on
an actual file system.

Several version control systems show amazing scalability and very good tool
support for recording the changes made by the user on a disk, viewing the
differences between repositories, and interactively resolving conflicts – areas that
we have not focused on.

Conclusions and Further Work By presenting a generalized framework of version
control, we have taken an important first step to enable reasoning about version
control systems and develop an actual system that is founded on a firm theory.
Nevertheless, there is still plenty of work to do.

While we have defined what constitutes a conflict, we have to investigate
efficient algorithms for detecting and resolving conflicts. A naive algorithm for
determining when a repository with n patches is inconsistent is O (n!). In the
future, we plan to investigate how to do better, and to identify special classes of
repositories that allow more efficient operations.

We would also like to investigate the algebraic structure that patches and
repositories carry. Corollary 5 and Definition 6 state that patches and internal
representations form a category. A fortiori, because every patch is invertible we
have a groupoid. Although we have presented the most basic algebraic properties
of patches, their true nature is still terra incognita.

We believe that our approach has a great many merits. Our own experience
with version control systems has been very much a love-hate relationship. We

could not live without them, but they are a source of continuous frustration. With
the theory presented, version control might just have a brighter future ahead.

Acknowledgements We thank David Roundy and the darcs team for several
inspiring discussions.

References

1. Codeville. http://codeville.org.
2. GNU arch. http://www.gnu.org/software/gnu-arch/.
3. monotone: distributed version control. http://venge.net/monotone/.
4. S. Balasubramaniam and Benjamin C. Pierce. What is a file synchronizer? In

Fourth Annual ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom ’98), October 1998.

5. Lars Bendix. Configuration Management and Version Control Revisited. PhD
thesis, Aalborg University, December 1995.

6. Per Cederqvist. Version Management with CVS. Network Theory Ltd., 2002.
7. Ben Collins-Sussman, Brian W. Fitzpatrick, and C. Michael Pilato. Version Con-

trol with Subversion. O’Reilly, 2004.
8. David Roundy et al. Darcs: David’s advanced revision control system.

http://www.darcs.net.
9. David L. Hicks, John J. Leggett, and John L. Schnase. Version Control in Hypertext

Systems. Texas A&M University, Hypermedia Research Lab, July 1991.
10. Mike Mason. Pragmatic Version Control: Using Subversion. Pragmatic Bookshelf,

2006.
11. Benjamin C. Pierce and Jérôme Vouillon. What’s in Unison? A formal specification

and reference implementation of a file synchronizer. Technical Report MS-CIS-03-
36, Dept. of Computer and Information Science, University of Pennsylvania, 2004.

12. Norman Ramsey and Elöd Csirmaz. An algebraic approach to file synchronization.
In Foundations of Software Engineering, pages 175–185, 2001.

13. Garrett Rooney. Practical Subversion. Apress, 2006.
14. Jennifer Vesperman. Essential CVS. O’Reilly Media, 2003.

A Proof of Lemma 4

Because g · f is applicable to X , we know that

(E1 ∪ E2) ∩X = S1 ∪ (S2 \ T1) .

If we intersect both sides of the equation with E1, we get

(E1 ∪ E2) ∩X ∩ E1 = (S1 ∪ (S2 \ T1)) ∩ E1 ,

which simplifies (using E1 ∩ (S2 \ T1) = ∅ and S1 ⊆ E1) to

E1 ∩X = S1 .

To show that g is applicable to f (X), we start again from

(E1 ∪ E2) ∩X = S1 ∪ (S2 \ T1) .

Now notice that the union on the right-hand side is disjoint, and therefore a
symmetric difference. We apply 4(T1 \S2)4T14S1 to both sides. Simplifying
yields:

((E1 ∪ E2) ∩X)4 (T1 \ S2)4 T1 4 S1) = S2 .

Now we intersect both sides with E2 and observe that (T1 \ S2) ∩ E2 = ∅ and
S2 ⊆ E2:

(((E1 ∪ E2) ∩X)4 T1 4 S1) ∩ E2 = S2 .

Within an intersection with E2, ((E1 ∪ E2) ∩X) = X , and therefore g is indeed
applicable to f (X).

The last part of the proof is surprisingly easy:

(g · f) (X) = (S1 ∪ (S2 \ T1))4X 4 ((T1 \ S2) ∪ T2)
= S1 4 (S2 \ T1)4X 4 (T1 \ S2)4 T2

= S2 4 (S1 4X 4 T1)4 T2

= g (f (X)) .

