
“Scrap Your Boilerplate” Reloaded

Ralf Hinze1 Andres Löh1 Bruno C. d. S. Oliveira2

1Universität Bonn

2University of Oxford

April 24, 2006

Goals

A new way to explain the Scrap Your Boilerplate approach to generic
programming:

more obvious relation to other GP approaches such as PolyP or
Generic Haskell
equally expressive as the original

Long-term: structure and compare generic programming approaches.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 2

Overview

1 Introduction: generic programming

2 The “spine view”

3 Functions on spines

4 Generic programming combinators

5 Properties of the “spine view”

6 Conclusions

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 3

Generic programming

In the context of Haskell (or functional programming):

defining functions that are parameterized by type arguments and can
access the structure of data types

classic examples: structural equality, parsing, pretty-printing

also known as: polytypic programming, structural polymorphism,
datatype-generic programming

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 4

Generic functions are more than overloaded functions

Overloaded functions

are parameterized by type arguments

have an ad-hoc behaviour for each data type

can be made to work for many data types, but for each data type a
separate implementation is required

Generic functions

can use the structure of data types

therefore work for a large class of data types with only a few cases

can even work for data types that the user is yet to define

generic functions ≈ overloaded functions +

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 5

Generic functions are more than overloaded functions

Overloaded functions

are parameterized by type arguments

have an ad-hoc behaviour for each data type

can be made to work for many data types, but for each data type a
separate implementation is required

Generic functions

can use the structure of data types

therefore work for a large class of data types with only a few cases

can even work for data types that the user is yet to define

generic functions ≈ overloaded functions +

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 5

Generic functions are more than overloaded functions

Overloaded functions

are parameterized by type arguments

have an ad-hoc behaviour for each data type

can be made to work for many data types, but for each data type a
separate implementation is required

Generic functions

can use the structure of data types

therefore work for a large class of data types with only a few cases

can even work for data types that the user is yet to define

generic functions ≈ overloaded functions + structure of data types

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 5

Generic functions are more than overloaded functions

Overloaded functions

are parameterized by type arguments

have an ad-hoc behaviour for each data type

can be made to work for many data types, but for each data type a
separate implementation is required

Generic functions

can use the structure of data types

therefore work for a large class of data types with only a few cases

can even work for data types that the user is yet to define

generic functions ≈ overloaded functions + generic view

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 5

Two orthogonal concepts for generic programming

A mechanism to express overloaded functions.

A generic view.

Current approaches to generic programming make different design
decisions for both concepts.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 6

Overloaded functions

Choices:

Haskell type-classes.

Dynamic types and run-time type casts.

A data type of type representations.

(Family of functions.)

(Compile-time specialization.)

Claim: Different mechanisms for overloaded functions can usually be
interchanged. The generic view is the real essence of a GP approach.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 7

Overloaded functions

Choices:

Haskell type-classes.

Dynamic types and run-time type casts.

A data type of type representations.

(Family of functions.)

(Compile-time specialization.)

Claim: Different mechanisms for overloaded functions can usually be
interchanged. The generic view is the real essence of a GP approach.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 7

Example: an overloaded sum function

sum :: Type a → a → Int
sum Int n = n
sum Char = 0
sum (List a) xs = foldr (+) 0 (map (sum a) xs)
sum (Pair a b) (x, y) = sum a x + sum b y
sum (Tree a) t = sum (List a) (inorder t)

We make use of a type of type representations:

data Type :: ∗ → ∗ where
List :: ∀a.Type a → Type [a]
Tree :: ∀a.Type a → Type (Tree a)
Pair :: ∀a b.Type a → Type b → Type (a, b)
Int :: Type Int
. . .

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 8

Example: an overloaded sum function

sum :: Type a → a → Int
sum Int n = n
sum Char = 0
sum (List a) xs = foldr (+) 0 (map (sum a) xs)
sum (Pair a b) (x, y) = sum a x + sum b y
sum (Tree a) t = sum (List a) (inorder t)

We make use of a type of type representations:

data Type :: ∗ → ∗ where
List :: ∀a.Type a → Type [a]
Tree :: ∀a.Type a → Type (Tree a)
Pair :: ∀a b.Type a → Type b → Type (a, b)
Int :: Type Int
. . .

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 8

Generic views

Choices:

Data types are fixed points of regular functors, as in PolyP.

Data types are sums of products, as in Generic Haskell.

What about SYB?

SYB is a combinator-based approach to generic programming.

Now: Identify the generic view at the basis of SYB.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 9

Generic views

Choices:

Data types are fixed points of regular functors, as in PolyP.

Data types are sums of products, as in Generic Haskell.

What about SYB?

SYB is a combinator-based approach to generic programming.

Now: Identify the generic view at the basis of SYB.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 9

Overview

1 Introduction: generic programming

2 The “spine view”

3 Functions on spines

4 Generic programming combinators

5 Properties of the “spine view”

6 Conclusions

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 10

What do Haskell values have in common?

The key to the Scrap Your Boilerplate view are not the data types, but the
values.

()

Just ’c’

Left 17

Node Empty True Empty

(:) 1 ((:) 2 ((:) 3 []))

(, , ,) False ’a’ 3 Nothing

They are all data constructors that are applied to other values.

data :: ∗ → ∗ where
Constr :: ∀a.a → a
(♦) :: ∀a b. (a → b) → a → b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 11

What do Haskell values have in common?

The key to the Scrap Your Boilerplate view are not the data types, but the
values.

()

Just ’c’

Left 17

Node Empty True Empty

(:) 1 ((:) 2 ((:) 3 []))

(, , ,) False ’a’ 3 Nothing

They are all data constructors that are applied to other values.

data :: ∗ → ∗ where
Constr :: ∀a.a → a
(♦) :: ∀a b. (a → b) → a → b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 11

What do Haskell values have in common?

The key to the Scrap Your Boilerplate view are not the data types, but the
values.

Constr ()

Constr Just ♦ ’c’

Constr Left ♦ 17

Constr Node ♦ Empty ♦ True ♦ Empty

Constr (:) ♦ 1 ♦ ((:) 2 ((:) 3 []))

Constr (, , ,) ♦ False ♦ ’a’ ♦ 3 ♦ Nothing

They are all data constructors that are applied to other values.

data :: ∗ → ∗ where
Constr :: ∀a.a → a
(♦) :: ∀a b. (a → b) → a → b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 11

What do Haskell values have in common?

The key to the Scrap Your Boilerplate view are not the data types, but the
values.

Constr ()

Constr Just ♦ ’c’

Constr Left ♦ 17

Constr Node ♦ Empty ♦ True ♦ Empty

Constr (:) ♦ 1 ♦ ((:) 2 ((:) 3 []))

Constr (, , ,) ♦ False ♦ ’a’ ♦ 3 ♦ Nothing

They are all data constructors that are applied to other values.

data :: ∗ → ∗ where

Constr :: ∀a.a → a
(♦) :: ∀a b. (a → b) → a → b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 11

What do Haskell values have in common?

The key to the Scrap Your Boilerplate view are not the data types, but the
values.

Constr ()

Constr Just ♦ ’c’

Constr Left ♦ 17

Constr Node ♦ Empty ♦ True ♦ Empty

Constr (:) ♦ 1 ♦ ((:) 2 ((:) 3 []))

Constr (, , ,) ♦ False ♦ ’a’ ♦ 3 ♦ Nothing

They are all data constructors that are applied to other values.

data f :: ∗ → ∗ where

Constr :: ∀a.a → f a
(♦) :: ∀a b.f (a → b) → a → f b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 11

What do Haskell values have in common?

The key to the Scrap Your Boilerplate view are not the data types, but the
values.

Constr ()

Constr Just ♦ ’c’

Constr Left ♦ 17

Constr Node ♦ Empty ♦ True ♦ Empty

Constr (:) ♦ 1 ♦ ((:) 2 ((:) 3 []))

Constr (, , ,) ♦ False ♦ ’a’ ♦ 3 ♦ Nothing

They are all data constructors that are applied to other values.

data Spine :: ∗ → ∗ where
Constr :: ∀a.a → Spine a
(♦) :: ∀a b.Spine (a → b) → a → Spine b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 11

This talk

Generic programming using the Spine data type.

data Spine :: ∗ → ∗ where
Constr :: ∀a.a → Spine a
(♦) :: ∀a b.Spine (a → b) → a → Spine b

In classic Haskell syntax:

data Spine a =
Constr a

| ∀b.Spine (b → a) ♦ b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 12

This talk

Generic programming using the Spine data type.

data Spine :: ∗ → ∗ where
Constr :: ∀a.a → Spine a
(♦) :: ∀a b.Spine (a → b) → a → Spine b

In classic Haskell syntax:

data Spine a =
Constr a

| ∀b.Spine (b → a) ♦ b

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 12

Overview

1 Introduction: generic programming

2 The “spine view”

3 Functions on spines

4 Generic programming combinators

5 Properties of the “spine view”

6 Conclusions

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 13

From spines to values

fromSpine :: ∀a.Spine a → a
fromSpine (Constr c) = c
fromSpine (f ♦ x) = fromSpine f x

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 14

From values to spines

toSpineTree :: ∀a.Tree a → Spine (Tree a)
toSpineTree Empty = Constr Empty
toSpineTree (Node l x r) = Constr Node ♦ l ♦ x ♦ r

toSpine(,) :: ∀a b.(a, b) → Spine (a, b)

toSpine(,) (x, y) = Constr (,) ♦ x ♦ y

toSpineInt :: Int → Spine Int
toSpineInt n = Constr n

The function toSpine is not parametrically polymorphic, but can be made
into an overloaded function.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 15

From values to spines

toSpineTree :: ∀a.Tree a → Spine (Tree a)
toSpineTree Empty = Constr Empty
toSpineTree (Node l x r) = Constr Node ♦ l ♦ x ♦ r

toSpine(,) :: ∀a b.(a, b) → Spine (a, b)

toSpine(,) (x, y) = Constr (,) ♦ x ♦ y

toSpineInt :: Int → Spine Int
toSpineInt n = Constr n

The function toSpine is not parametrically polymorphic, but can be made
into an overloaded function.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 15

From values to spines – continued

toSpine :: ∀a.Type a → a → Spine a
toSpine (Tree a) = toSpineTree

toSpine (Pair a b) = toSpine(,)

toSpine Int = toSpineInt

toSpine . . .

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 16

Using spines to program generically

Let us program a simple toString function:

toString :: Type a → a → String
toString t x = toString (toSpine t x)

toString :: Spine a → String
toString (Constr c) = ???
toString (f ♦ x) = "(" ++ toString f ++ " " ++ toString ??? x ++ ")"

We lack information:

constructor name (and possibly other info about the constructor)

type information about the spine contents

SYB〉 toString (Tree Bool) (Node Empty False Empty)
"(((Node Empty) False) Empty)"

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 17

Using spines to program generically

Let us program a simple toString function:

toString :: Type a → a → String
toString t x = toString (toSpine t x)

toString :: Spine a → String
toString (Constr c) = ???
toString (f ♦ x) = "(" ++ toString f ++ " " ++ toString ??? x ++ ")"

We lack information:

constructor name (and possibly other info about the constructor)

type information about the spine contents

SYB〉 toString (Tree Bool) (Node Empty False Empty)
"(((Node Empty) False) Empty)"

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 17

Using spines to program generically

Let us program a simple toString function:

toString :: Type a → a → String
toString t x = toString (toSpine t x)

toString :: Spine a → String
toString (c ‘As‘ n) = n
toString (f ♦ (x : t)) = "(" ++ toString f ++ " " ++ toString t x ++ ")"

We lack information:

constructor name (and possibly other info about the constructor)

type information about the spine contents

SYB〉 toString (Tree Bool) (Node Empty False Empty)
"(((Node Empty) False) Empty)"

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 17

Using spines to program generically

Let us program a simple toString function:

toString :: Type a → a → String
toString t x = toString (toSpine t x)

toString :: Spine a → String
toString (c ‘As‘ n) = n
toString (f ♦ (x : t)) = "(" ++ toString f ++ " " ++ toString t x ++ ")"

We lack information:

constructor name (and possibly other info about the constructor)

type information about the spine contents

SYB〉 toString (Tree Bool) (Node Empty False Empty)
"(((Node Empty) False) Empty)"

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 17

The full “spine view”

type ConDescr = String

data Spine :: ∗ → ∗ where
As :: ∀a.a → ConDescr → Spine a
(♦) :: ∀a b.Spine (a → b) → Typed a → Spine b

data Typed :: ∗ → ∗ where
(:) :: ∀a.a → Type a → Typed a

Of course, fromSpine and toSpine must be adapted:

toSpine :: ∀a.Type a → a → Spine a
toSpine (Tree a) Empty = Empty ‘As‘ "Empty"
toSpine (Tree a) (Node l x r) = Node ‘As‘ "Node"

♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 18

The full “spine view”

type ConDescr = String

data Spine :: ∗ → ∗ where
As :: ∀a.a → ConDescr → Spine a
(♦) :: ∀a b.Spine (a → b) → Typed a → Spine b

data Typed :: ∗ → ∗ where
(:) :: ∀a.a → Type a → Typed a

Of course, fromSpine and toSpine must be adapted:

toSpine :: ∀a.Type a → a → Spine a
toSpine (Tree a) Empty = Empty ‘As‘ "Empty"
toSpine (Tree a) (Node l x r) = Node ‘As‘ "Node"

♦ (l : Tree a) ♦ (x : a) ♦ (r : Tree a)

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 18

Sum all integers, generically

sum :: ∀a.Type a → a → Int
sum Int n = n
sum t x = sum (toSpine t x)

sum :: ∀a.Spine a → Int
sum (c ‘As‘ n) = 0
sum (f ♦ (x : t)) = sum f + sum t x

Example:

SYB〉 sum (List (Either Bool Int)) [Right 15, Left False,Right 27]
42

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 19

Sum all integers, generically

sum :: ∀a.Type a → a → Int
sum Int n = n
sum t x = sum (toSpine t x)

sum :: ∀a.Spine a → Int
sum (c ‘As‘ n) = 0
sum (f ♦ (x : t)) = sum f + sum t x

Example:

SYB〉 sum (List (Either Bool Int)) [Right 15, Left False,Right 27]
42

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 19

Overview

1 Introduction: generic programming

2 The “spine view”

3 Functions on spines

4 Generic programming combinators

5 Properties of the “spine view”

6 Conclusions

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 20

Queries

type Query r = ∀a.Type a → a → r

Both toString and sum are queries:

toString :: Query String
sum :: Query Int

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 21

Queries

type Query r = ∀a.Type a → a → r

Both toString and sum are queries:

toString :: Query String
sum :: Query Int

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 21

Query combinators

The function mapQ applies a query to all immediate children of a value:

mapQ :: ∀r.Query r → Query [r]
mapQ q t = mapQ q ◦ toSpine t

mapQ :: ∀r.Query r → (∀a.Spine a → [r])
mapQ q (c ‘As‘ n) = []
mapQ q (f ♦ (x : t)) = mapQ q f ++ [q t x]

The function everything applies a query recursively and combines the
results:

everything :: ∀r.(r → r → r) → Query r → Query r
everything op q t x = foldl1 op ([q t x] ++ mapQ (everything op q) t x)

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 22

Query combinators

The function mapQ applies a query to all immediate children of a value:

mapQ :: ∀r.Query r → Query [r]
mapQ q t = mapQ q ◦ toSpine t

mapQ :: ∀r.Query r → (∀a.Spine a → [r])
mapQ q (c ‘As‘ n) = []
mapQ q (f ♦ (x : t)) = mapQ q f ++ [q t x]

The function everything applies a query recursively and combines the
results:

everything :: ∀r.(r → r → r) → Query r → Query r
everything op q t x = foldl1 op ([q t x] ++ mapQ (everything op q) t x)

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 22

Using query combinators

Rewriting sum as a query:

sumQ :: Query Int
sumQ Int n = n
sumQ t x = 0

sum :: Query Int
sum = everything (+) sumQ

Similarly, we can define SYB traversals

type Traversal = ∀a.Type a → a → a

and traversal combinators.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 23

Overview

1 Introduction: generic programming

2 The “spine view”

3 Functions on spines

4 Generic programming combinators

5 Properties of the “spine view”

6 Conclusions

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 24

Comparison with the original SYB approach

data Spine :: ∗ → ∗ where
As :: ∀a.a → ConDescr → Spine a
(♦) :: ∀a b.Spine (a → b) → Typed a → Spine b

foldSpine :: ∀a r.
(∀a.a → r a) →
(∀a b.r (a → b) → Typed a → r b) →
Spine a → r a

foldSpine constr (�) (c ‘As‘ n) = constr c
foldSpine constr (�) (f ♦ (x : t)) = (foldSpine constr (�) f) � (x : t)

Compare this to SYB’s gfoldl:

gfoldl :: ∀a r.Data a ⇒
(∀a b.Data a ⇒ r (a → b) → a → r b) →
(∀a.a → r a) →
a → r a

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 25

Comparison with the original SYB approach

data Spine :: ∗ → ∗ where
As :: ∀a.a → ConDescr → Spine a
(♦) :: ∀a b.Spine (a → b) → Typed a → Spine b

foldSpine :: ∀a r.
(∀a.a → r a) →
(∀a b.r (a → b) → Typed a → r b) →
Spine a → r a

foldSpine constr (�) (c ‘As‘ n) = constr c
foldSpine constr (�) (f ♦ (x : t)) = (foldSpine constr (�) f) � (x : t)

Compare this to SYB’s gfoldl:

gfoldl :: ∀a r.Data a ⇒
(∀a b.Data a ⇒ r (a → b) → a → r b) →
(∀a.a → r a) →
a → r a

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 25

Comparison with the original SYB approach

data Spine :: ∗ → ∗ where
As :: ∀a.a → ConDescr → Spine a
(♦) :: ∀a b.Spine (a → b) → Typed a → Spine b

foldSpine :: ∀a r.
(∀a.a → r a) →
(∀a b.r (a → b) → Typed a → r b) →
Spine a → r a

foldSpine constr (�) (c ‘As‘ n) = constr c
foldSpine constr (�) (f ♦ (x : t)) = (foldSpine constr (�) f) � (x : t)

Compare this to SYB’s gfoldl:

gfoldl :: ∀a r.Data a ⇒
(∀a b.Data a ⇒ r (a → b) → a → r b) →
(∀a.a → r a) →
a → r a

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 25

Spine view vs. gfoldl

All original SYB combinators are defined in terms of gfoldl.

Using Spine, we can define generic functions in a more direct way.

The function gfoldl is the catamorphism on Spine composed with
toSpine.

One can build the spine representation using gfoldl; therefore, both
approaches are equally expressive.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 26

Consumers vs. producers

consume :: ∀a.Type a → a → t
consume . . .
consume t x = consume (toSpine t x)

consume :: ∀a.Spine a → t
consume . . .

produce :: ∀a.Type a → t → a
produce . . .
produce t x = fromSpine (produce x)

produce :: ∀a.t → Spine a
produce . . .

Cannot exhibit type-specific behaviour!

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 27

Consumers vs. producers

consume :: ∀a.Type a → a → t
consume . . .
consume t x = consume (toSpine t x)

consume :: ∀a.Spine a → t
consume . . .

produce :: ∀a.Type a → t → a
produce . . .
produce t x = fromSpine (produce x)

produce :: ∀a.t → Spine a
produce . . .

Cannot exhibit type-specific behaviour!

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 27

SYB and producers

The original SYB (without extensions) as well as the “spine view”
cannot handle producers (such as a generic parsing function).

Simon Peyton Jones and Ralf Lämmel define gunfold in a successor to
the original SYB paper.

Unfortunately, gunfold doesn’t have a direct connection to the Spine
data type.

However, one can play the same trick and define a data type which
has gunfold as its catamorphism.

SYB also cannot handle generic functions on type constructors (such
as a generic map).

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 28

Applicability of toSpine

The Spine type is based on the structure of concrete Haskell values.
Therefore, it is very widely applicable:

data Dynamic :: ∗ where
Dyn :: ∀t.t → Type t → Dynamic

data Type :: ∗ → ∗ where
. . .
Type :: ∀a.Type a → Type (Type a)
Dynamic :: Type Dynamic
. . .

toSpine (Type a′) (Type a) = Type ‘As‘ "Type" ♦ (a : Type a)
toSpine Dynamic (Dyn x t) = Dyn ‘As‘ "Dyn" ♦ (x : t) ♦ (t : Type t)

The Spine view covers GADTs and typed existentials in addition to regular
and nested data types.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 29

Applicability of toSpine

The Spine type is based on the structure of concrete Haskell values.
Therefore, it is very widely applicable:

data Dynamic :: ∗ where
Dyn :: ∀t.t → Type t → Dynamic

data Type :: ∗ → ∗ where
. . .
Type :: ∀a.Type a → Type (Type a)
Dynamic :: Type Dynamic
. . .

toSpine (Type a′) (Type a) = Type ‘As‘ "Type" ♦ (a : Type a)
toSpine Dynamic (Dyn x t) = Dyn ‘As‘ "Dyn" ♦ (x : t) ♦ (t : Type t)

The Spine view covers GADTs and typed existentials in addition to regular
and nested data types.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 29

Applicability of toSpine

The Spine type is based on the structure of concrete Haskell values.
Therefore, it is very widely applicable:

data Dynamic :: ∗ where
Dyn :: ∀t.t → Type t → Dynamic

data Type :: ∗ → ∗ where
. . .
Type :: ∀a.Type a → Type (Type a)
Dynamic :: Type Dynamic
. . .

toSpine (Type a′) (Type a) = Type ‘As‘ "Type" ♦ (a : Type a)
toSpine Dynamic (Dyn x t) = Dyn ‘As‘ "Dyn" ♦ (x : t) ♦ (t : Type t)

The Spine view covers GADTs and typed existentials in addition to regular
and nested data types.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 29

Overview

1 Introduction: generic programming

2 The “spine view”

3 Functions on spines

4 Generic programming combinators

5 Properties of the “spine view”

6 Conclusions

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 30

Conclusions

Using the Spine data type, we can reimplement SYB.

Using this framework, the relation to PolyP and Generic Haskell (and
other approaches) becomes more obvious.

SYB without extensions can express relatively few generic functions.

SYB is applicable to a very large class of data types, including
GADTs.

Our approach as shown here is not suitable as a library, because the
data type Type is not extensible. Alternatives:

Add a form of extensible data types to the language.
Use a different mechanism to express overloaded functions, but keep
the Spine view.

We can extend our approach to handle generic producers and generic
functions on type constructors.

Ralf Hinze, Andres Löh, Bruno Oliveira “Scrap Your Boilerplate” Reloaded 31

	Introduction: generic programming
	The ``spine view''
	Functions on spines
	Generic programming combinators
	Properties of the ``spine view''
	Conclusions

