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About Well-Typed LLP

I Founded 2008 in Oxford.
I Three partners: Duncan Coutts, Ian Lynagh, me.
I Plus currently five contractors working on various projects

(but not all full-time).

I Distributed over the world (Australia, France, Germany,
UK, US).

I We are “the Haskell Consultants”, offering planning,
support, development and training around the Haskell
programming language.

I We created the Industrial Haskell Group which has a
collaborative development scheme to benefit the Haskell
community, with different membership options (full,
associate, academic).



About Well-Typed LLP

I Founded 2008 in Oxford.
I Three partners: Duncan Coutts, Ian Lynagh, me.
I Plus currently five contractors working on various projects

(but not all full-time).
I Distributed over the world (Australia, France, Germany,

UK, US).
I We are “the Haskell Consultants”, offering planning,

support, development and training around the Haskell
programming language.

I We created the Industrial Haskell Group which has a
collaborative development scheme to benefit the Haskell
community, with different membership options (full,
associate, academic).



Services we offer

I Planning and designing (Haskell) projects.
I Developing or improving Haskell programs.
I Code review.
I Support for companies using Haskell.
I Training on various topics surrounding Haskell and

functional programming.

I We are trying to give back to the community by making as
much of our work as possible open-source.



About Haskell

I A purely functional-programming language.
I A strong type system (lots of static guarantees, easy to

use, type inference).
I Many compilers, one of them industrial-strength and

strongly optimizing (GHC).
I Open-source (most compilers and libraries are

BSD-licensed).
I Lots of libraries, Hackage repository.
I Easy to learn (lots of online tutorials).
I A very active community (mailing lists, IRC, StackOverflow,

Hackathons).



The Parallel GHC Project

I The currently largest project we have at Well-Typed LLP.
I Funded by Microsoft Research in Cambridge (also GHC

HQ).
I Runs for two years.



The Parallel GHC Project
Goals

I polish GHC’s support for parallel programming,
I demonstrate the parallel programming in Haskell works

and scales,
I develop and improve tools that support the programming

task,
I develop tutorials and information material.



The Parallel GHC Project
Participating organizations

I Los Alamos National Labs (USA)
Monte Carlo algorithms for particle and radiation simulation

I Dragonfly (New Zealand)
Implementation of a fast Bayesian model fitter

I Willow Garage (USA)
High-level distributed robot simulation

I Internet Initiative Japan (Japan)
High-performance network servers

Each partner organization has a Haskell project involving
parallelism they want to implement.
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The Parallel GHC Project
Workflow

I Organizations discuss their project plans with us.
I We jointly develop implementation goals and the design of

the programs.
I The organizations develop the programs, with our

assistance.
I We identify potential problems and stumbling blocks.
I We spark off separate mini-projects in order to fix such

problems.
I We communicate ideas for further improvements to the

GHC developers.
I We collect results and experiences and extract it into

regular project digests, and later into new tutorial material.



Mini-projects so far

I A web portal for parallel programming in Haskell.
I A monthly newsletter on parallel programming in Haskell.
I Fixing hidden limits in the GHC IO manager.
I A Haskell binding for MPI.
I Better visualizations in ThreadScope.
I Parallel PRNGs in Haskell.
I . . .



Why parallel programming
in Haskell?



Parallel vs. concurrent

Parallel programming

The goal is to run a program in parallel, on multiple cores, in
order to speed up execution time.

Concurrent programming

The goal is to describe and manage several mostly
independent processes (threads) within a program that appear
to be interleaved.
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Parallel vs. concurrent
The confusion

I Concurrent programs might be run in parallel, but
concurrency is mainly a way to structure a program, and
makes equally much sense on a single CPU.

I Concurrency leads to a whole range of potential tricky
problems (such as deadlocks, race conditions, fairness
concerns, etc.)

I Parallelism can be achieved using concurrency, but there
are several other techniques that can be used.

I It is definitely worth investigating alternatives to
concurrency for functional programming.



Parallel vs. concurrent
Haskell

Haskell supports classic concurrency:
I “classic” concurrency interface that allows creation and

management of threads as well as communicating
between threads;

I higher-level libraries such as Software Transactional
Memory that allow the lock-free description of atomic
transactions;

But Haskell supports separate approaches to parallelism:
I semi-explicit parallelism by annotating expressions that

should be parallelized;
I higher-level libraries (strategies, skeletons) built on top of

the basic interface;
I data parallelism



Parallel vs. concurrent
Haskell

Haskell supports classic concurrency:
I “classic” concurrency interface that allows creation and

management of threads as well as communicating
between threads;

I higher-level libraries such as Software Transactional
Memory that allow the lock-free description of atomic
transactions;

But Haskell supports separate approaches to parallelism:
I semi-explicit parallelism by annotating expressions that

should be parallelized;
I higher-level libraries (strategies, skeletons) built on top of

the basic interface;
I data parallelism



Parallel vs. concurrent
(Non)Determinism

I Models of concurrency are necessarily nondeterministic.
Processes perform IO, events can occur at arbitrary times.

I In contrast, the approaches to Haskell parallelism are
deterministic – number of processors and scheduling has
no influence on the result.

I The programmer need not be concerned about mundane
aspects such as scheduling, order of events, maintaining
locks, communicating results, synchronization, . . .



A little bit about Haskell



More about Haskell
Purity

In Haskell, functions do not have side effects:
I A function f :: Int→ Int is a pure function (in the

mathematical sense) from integers to integers: there is no
IO, no nondeterminism, no randomness involved.

I In particular, applying f to the same integer will always
result in the same result.

I A function g :: Int→ IO Int is a function from integers to
an IO action yielding an integer. It is still pure! Applying g
to the same integer will always result in the same action.

I Evaluating a value of type IO Int will itself not cause IO.
Only the run-time system can “run” IO actions.



More about Haskell
Purity

In Haskell, functions do not have side effects:
I A function f :: Int→ Int is a pure function (in the

mathematical sense) from integers to integers: there is no
IO, no nondeterminism, no randomness involved.

I In particular, applying f to the same integer will always
result in the same result.

I A function g :: Int→ IO Int is a function from integers to
an IO action yielding an integer. It is still pure! Applying g
to the same integer will always result in the same action.

I Evaluating a value of type IO Int will itself not cause IO.
Only the run-time system can “run” IO actions.



More about Haskell
Benefits of purity

What do we gain?
I It doesn’t matter how often a value if evaluated. Might have

an impact on efficiency, but not on the result of a program.

I We can see how evil a piece of code is by looking at its
type. There is no escape from IO . Once a piece of code
involves IO, it appears in the type.

I We can thus in principle treat IO code differently from
non-IO code (and similar for other kinds of effects).
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More about Haskell
Laziness

Haskell uses non-strict (in practice: lazy) evaluation:
expressions are evaluated on demand.

Examples:

const x y = x
test = const 1 (error "foo")

cond b t e = if b then t else e

While laziness is not essential for parallel programming, the
ability to define control operators is quite useful.

Speculative evaluation is allowed.
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Deterministic parallel
programming using
annotations



Basic idea

I We mark parts of the program that we consider suitable for
parallel evaluation.

I We let the runtime system decide about all the details.



Annotated programs

I If a program has type a , then an annotated program has
type Eval a .

I Once we’ve built an annotated program, we can “run” it
using runEval :: Eval a→ a .



Annotation primitives

The core of the annotation mechanism are the following two
primitives:

rseq :: a→ Eval a
rpar :: a→ Eval a

I The function rseq marks its argument as a computation
that should be evaluated (to head-normal form) before
continuing.

I The function rpar marks its argument as a computation
that might be beneficial to be evaluated in parallel.
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About head-normal form

I All Haskell datatypes define some form of tree structure.
I Depending on the type, a node can be one of several

constructors.
I Depending on the constructor, there are different subtrees

of various types.
I Quite comparable to parse trees and context-free

grammars.

Evaluation:
I If a computation is evaluated far enough so that the root

constructor is known, then it is in head normal form.
I If a computation is completely evaluated, i.e., if the

complete tree is known, then it is in normal form.
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Composing parallel computations

The datype Eval is abstract, but supports more operations:

return :: a→ Eval a
(>>=) :: Eval a→ (a→ Eval b)→ Eval b

I Here, return lifts any expression into a computation,
without forcing any evaluation.

I The operator (>>=) is for combining two computations,
where the second can use the result of the first.

I Once a computation is composed, we can run it and get at
the final value.
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Example

rpar expensive1 >>= λr1 →
rpar expensive2 >>= λr2 →
rseq r1 >>= λs1 →
rseq r2 >>= λs2 →
return (s1, s2)

Better syntax:

do
r1 ← rpar expensive1
r2 ← rpar expensive2
s1 ← rseq r1
s2 ← rseq r2
return (s1, s2)
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Sparks

What really happens on rpar :
I The run-time system manages multiple capabilities

(usually one per CPU core).
I For run-time maintains a spark pool.
I An expression marked for parallel execution in rpar creates

a spark in the spark pool.
I If a capability is idle, it can steal a spark from the pool.
I Spark evaluation is speculative.



Annotating individual
expressions feels low-level
– can’t we abstract?



Strategies

type Strategy a = a→ Eval a

Note:

rpar :: Strategy a
rseq :: Strategy a
return :: Strategy a
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Applying strategies

using :: a→ Strategy a→ a
x ‘using‘ s = runEval (s x)

This concept of attaching strategies to values allows us to
describe general evaluation strategies based on the type. And
we can do so separately from the algorithm.
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Composing strategies

dot :: Strategy a→ Strategy a→ Strategy a
(s1 ‘dot‘ s2) x = s2 (x ‘using‘ s1)



More control about evaluation

rnf :: NFData a⇒ Strategy a

Evaluates completely (i.e., to normal form, not just head-normal
form).

Note that rseq is enough to implement rnf for concrete

datatypes (thus rnf is just a library function):

rnfList :: NFData a⇒ Strategy [a]
rnfList [ ] = return [ ]
rnfList (x : xs) = do

x′ ← rnf x
xs′ ← rnfList xs
return (x′ : xs′)
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Abstracting over list strategies

We make the element strategy an argument:

evalList :: Strategy a→ Strategy [a]
evalList s [ ] = return [ ]
evalList s (x : xs) = do

x′ ← s x
xs′ ← evalList s xs
return (x′ : xs′)

Now:

rnfList :: NFData a⇒ Strategy [a]
rnfList = evalList rnf
parList :: Strategy a→ Strategy [a]
parList s = evalList (rpar ‘dot‘ s)
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Common patterns

parMap :: Strategy b→ (a→ b)→ [a]→ [b]
parMap s f xs = map f xs ‘using‘ parList s

We can easily define similar strategies for other data types!
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Laziness – good or bad?

Consider parMap again:

parMap :: Strategy b→ (a→ b)→ [a]→ [b]
parMap s f xs = map f xs ‘using‘ parList s

Such a function would be useless in a strict language, as the
list would be evaluated prior to executing the function.

However . . .
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Some pitfalls



Too much laziness

Sparking an expression suggests it for evaluation, but only to
weak-head normal form.

If we want to spark computations that return complex
datastructures, we have to prevent them from returning
immediately with a thunk.

It’s a frequent mistake that parallelism does not arise because
that sparked structures are only forced much later, in the main
thread.

Strategies give us an easy way out. One should always think
about how far a data structure should evaluate an expression.
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Too little laziness

It may be tempting to say

reallyLongList ‘using‘ parList rnf

for a long list of potentially parallel computations.

However, regardless of its argument strategy parList always
forces the spine of the entire list (in order to generate the
sparks).

Another strategy can help:

parBuffer :: Int→ Strategy a→ Strategy [a]

Maintains a rolling buffer of parallel computations. Only sparks
the next if the first is consumed.
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Granularity

There is little, but still some overhead to spark creation and
computation:

I creating too many, too small sparks will save less work
than it creates;

I creating too few, too large sparks will mean that some
CPUs are idle while waiting for other required parts of the
computation to finish.



Why not automatic?

This also answers why we cannot (yet) do fully automatic
parallelisation:

I it is hard to judge the cost of an expression automatically,
and therefore generate parallelism with the right
granularity;

I Haskell’s default laziness can play tricks on us, and making
a program more strict automatically can lead to bad results.



Debugging parallel programs

The correctness of a parallel program in Haskell is no harder to
achieve than that of a sequential program.

However, the efficiency can still be tricky to get right. It is a
common problem to get less speedup than expected.
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GHC events

I The runtime system of GHC can emit statistics about how
much each capability has worked, how much time has
been spent on garbage collection etc.

I If requested, we can generate an extremely detailed
stream of events from the runtime system.

I After execution, the event log can be analyzed and
visualized using a tool called ThreadScope.



ThreadScope

I Using ThreadScope, we can get a time-based graphical
view of CPU activity and garbage collection.

I We can spot granularity problems if we see CPUs starting
and stopping on sparks continuously, and hardly doing any
real work.

I We can also spot CPUs waiting for other CPUs.
I We can spot heap and garbage collection problems.
I We can spot evaluation order problems if computations

take far longer, far shorter than expected or happen at
strange times during the program.

I Much can still be improved: we are working hard on new
and better visualizations of even more information, and on
automatic problem detection.
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Experience in practice

For the LANL particle simulator, which in essence runs a very
large number of simultaneous computations, parallelization
using strategies was easy:

I we can chunk the input list into suitably large sets,
I we can buffer the input list to avoid creating too many

sparks,
I we can then spark the chunks, and gradually accumulate

the staticstics.

The strategy can be kept almost completely external to the rest
of the code, and it is easy to play with many subtle variations.

Programming patterns (such as map-reduce) can be extracted
into reusable libraries.
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Expectations for the future

In the Dragonfly project, we expect to get a long way using
strategies as well, but we are also planning to use data
parallelism by means of the repa library:

I shape-polymorphic arrays;
I index function specified independently of the data;
I algorithms on the arrays are automatically parallelized;
I library built on top of lower-level primitives.



Conclusions

I When you want to do parallel programming, try to avoid
low-level concurrency.

I A pure functional programming language such as Haskell
is particularly useful for high-level descriptions of parallel
programs.

I Lots of different abstractions can be built on top of just a
few primitives.

I We are working on the Parallel GHC Project to improve
tools support and show that the current approaches can
scale.



Recent news

Strategies and data parallelism are already there right now, but
there are new technologies currently in development as well:

I Yet more to come: the par-monad package allows a
deterministic approach to multithreading using write-once
result variables.

I Cloud Haskell is a strongly typed Erlang-like approach to
distributed programming in Haskell.

Simon Marlow has written an excellent an up-to-date tutorial to
parallel programming in Haskell:
http://community.haskell.org/~simonmar/par-tutorial.pdf
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