
Dec@ding style files

Andres Löh
Universiteit Utrecht

andres@cs.uu.nl

November 8, 2002

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

➙ We will do that.

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

➙ We will do that.
➙ We will learn that there is much more to know about LATEX

than is covered by most LATEX books.

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

➙ We will do that.
➙ We will learn that there is much more to know about LATEX

than is covered by most LATEX books.
➙ We will explore some of the theory necessary to understand

what is going on in style files.

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

➙ We will do that.
➙ We will learn that there is much more to know about LATEX

than is covered by most LATEX books.
➙ We will explore some of the theory necessary to understand

what is going on in style files.
➙ We will learn that LATEX offers an extremely powerful, but also

extremely confusing programming language.

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

➙ We will do that.
➙ We will learn that there is much more to know about LATEX

than is covered by most LATEX books.
➙ We will explore some of the theory necessary to understand

what is going on in style files.
➙ We will learn that LATEX offers an extremely powerful, but also

extremely confusing programming language.
➙ We will not learn how to write own programs/styles for LATEX.

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

➙ We will do that.
➙ We will learn that there is much more to know about LATEX

than is covered by most LATEX books.
➙ We will explore some of the theory necessary to understand

what is going on in style files.
➙ We will learn that LATEX offers an extremely powerful, but also

extremely confusing programming language.
➙ We will not learn how to write own programs/styles for LATEX.
➙ We will not explain everything in detail.

Goals of this t@lk
Have you ever looked at a LATEX style (package) file?

➙ We will do that.
➙ We will learn that there is much more to know about LATEX

than is covered by most LATEX books.
➙ We will explore some of the theory necessary to understand

what is going on in style files.
➙ We will learn that LATEX offers an extremely powerful, but also

extremely confusing programming language.
➙ We will not learn how to write own programs/styles for LATEX.
➙ We will not explain everything in detail.

Don’t panic!

Using p@ck@ges

LATEX provides the \usepackage command:

\usepackage{tabularx}

\usepackage[german]{babel}

Using p@ck@ges

LATEX provides the \usepackage command:

\usepackage{tabularx}

\usepackage[german]{babel}

➙ There is a huge amount of packages available for LATEX – far
more than are shipped with the common distributions.

Using p@ck@ges

LATEX provides the \usepackage command:

\usepackage{tabularx}

\usepackage[german]{babel}

➙ There is a huge amount of packages available for LATEX – far
more than are shipped with the common distributions.

➙ Check www.ctan.org if you are interested.

www.ctan.org

Using p@ck@ges

LATEX provides the \usepackage command:

\usepackage{tabularx}

\usepackage[german]{babel}

➙ There is a huge amount of packages available for LATEX – far
more than are shipped with the common distributions.

➙ Check www.ctan.org if you are interested.
➙ The command usepackage essentially includes the

corresponding style file into your LATEX source.
– \usepackage{tabularx} would look for tabularx.sty.
– \usepackage{babel} would look for babel.sty.

www.ctan.org
tabularx.sty
babel.sty

Using p@ck@ges

LATEX provides the \usepackage command:

\usepackage{tabularx}

\usepackage[german]{babel}

➙ There is a huge amount of packages available for LATEX – far
more than are shipped with the common distributions.

➙ Check www.ctan.org if you are interested.
➙ The command usepackage essentially includes the

corresponding style file into your LATEX source.
– \usepackage{tabularx} would look for tabularx.sty.
– \usepackage{babel} would look for babel.sty.

➙ Options (in square brackets) can be passed to the packages.

www.ctan.org
tabularx.sty
babel.sty

What d@ style files d@?

➙ They can change the behaviour of LATEX (for instance, by
redefining existing commands).

What d@ style files d@?

➙ They can change the behaviour of LATEX (for instance, by
redefining existing commands).

➙ They can provide new commands (and environments).

What d@ style files d@?

➙ They can change the behaviour of LATEX (for instance, by
redefining existing commands).

➙ They can provide new commands (and environments).
➙ In principle, style files are nothing more than LATEX sources

themselves.

What d@ style files d@?

➙ They can change the behaviour of LATEX (for instance, by
redefining existing commands).

➙ They can provide new commands (and environments).
➙ In principle, style files are nothing more than LATEX sources

themselves.

But . . .

An excerpt fr@m the tabularx style file

[...]

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

\def\TX@{tabularx}

[...]

An excerpt fr@m the tabularx style file

[...]

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

\def\TX@{tabularx}

[...]

An excerpt fr@m the tabularx style file

[...]

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

\def\TX@{tabularx}

[...]

It’s a kind of m@gic

➙ The code looks generally cryptic.

It’s a kind of m@gic

➙ The code looks generally cryptic.
➙ It seems to use all sorts of strange commands.

It’s a kind of m@gic

➙ The code looks generally cryptic.
➙ It seems to use all sorts of strange commands.
➙ If one looks, for instance, into the LATEX Companion one will

not find any explanation.

It’s a kind of m@gic

➙ The code looks generally cryptic.
➙ It seems to use all sorts of strange commands.
➙ If one looks, for instance, into the LATEX Companion one will

not find any explanation.
➙ (Nevertheless, the LATEX companion is a very nice book and

hereby recommended.)

It’s a kind of m@gic

➙ The code looks generally cryptic.
➙ It seems to use all sorts of strange commands.
➙ If one looks, for instance, into the LATEX Companion one will

not find any explanation.
➙ (Nevertheless, the LATEX companion is a very nice book and

hereby recommended.)
➙ In fact, we deal here with primitive and LATEX kernel

commands . . .

A bit of hist@ry

A bit of hist@ry

➙ TEX is a typesetting system created by Donald E. Knuth.

A bit of hist@ry

➙ TEX is a typesetting system created by Donald E. Knuth.
➙ TEX itself offers only a small number of primitive commands,

but is programmable through a powerful macro language.

A bit of hist@ry

➙ TEX is a typesetting system created by Donald E. Knuth.
➙ TEX itself offers only a small number of primitive commands,

but is programmable through a powerful macro language.
➙ For TEX to be usable, Knuth also created a set of useful macros

called plainTEX.

A bit of hist@ry

➙ TEX is a typesetting system created by Donald E. Knuth.
➙ TEX itself offers only a small number of primitive commands,

but is programmable through a powerful macro language.
➙ For TEX to be usable, Knuth also created a set of useful macros

called plainTEX.
➙ Later, Leslie Lamport developed a far more sophisticated (and

complex) macro package that he called LATEX.

A bit of hist@ry

➙ TEX is a typesetting system created by Donald E. Knuth.
➙ TEX itself offers only a small number of primitive commands,

but is programmable through a powerful macro language.
➙ For TEX to be usable, Knuth also created a set of useful macros

called plainTEX.
➙ Later, Leslie Lamport developed a far more sophisticated (and

complex) macro package that he called LATEX.
➙ To facilitate the switch for former plainTEX users, he included

most of plainTEX’s macros in LATEX, but additionally created
improved versions of these commands.

A bit of hist@ry

➙ TEX is a typesetting system created by Donald E. Knuth.
➙ TEX itself offers only a small number of primitive commands,

but is programmable through a powerful macro language.
➙ For TEX to be usable, Knuth also created a set of useful macros

called plainTEX.
➙ Later, Leslie Lamport developed a far more sophisticated (and

complex) macro package that he called LATEX.
➙ To facilitate the switch for former plainTEX users, he included

most of plainTEX’s macros in LATEX, but additionally created
improved versions of these commands.

➙ The key to LATEX’s success is its class/package system which
makes it easy to integrate third-party extensions into LATEX.

A bit of hist@ry

➙ TEX is a typesetting system created by Donald E. Knuth.
➙ TEX itself offers only a small number of primitive commands,

but is programmable through a powerful macro language.
➙ For TEX to be usable, Knuth also created a set of useful macros

called plainTEX.
➙ Later, Leslie Lamport developed a far more sophisticated (and

complex) macro package that he called LATEX.
➙ To facilitate the switch for former plainTEX users, he included

most of plainTEX’s macros in LATEX, but additionally created
improved versions of these commands.

➙ The key to LATEX’s success is its class/package system which
makes it easy to integrate third-party extensions into LATEX.

➙ The term LATEX nowadays refers to all packages available for it.
The core macro package originally written by Lamport is
called the LATEX kernel or LATEX format.

What do we learn fr@m that?

➙ TEX is the name of the underlying typesetting system.
➙ When we call latex on the command line, we still call TEX, but

with the LATEX format preloaded.
➙ When we call tex on the command line, then TEX with the

plainTEX format would be used.
➙ There are more formats than just plainTEX and LATEX, some of

them more recent, among them the very promising ConTEXt.

What has @ll this t@ do with style files?

If we encounter unknown commands (for instance in in style files),
that can have multiple reasons:

What has @ll this t@ do with style files?

If we encounter unknown commands (for instance in in style files),
that can have multiple reasons:

➙ The command is defined in another style (or the class) file.

What has @ll this t@ do with style files?

If we encounter unknown commands (for instance in in style files),
that can have multiple reasons:

➙ The command is defined in another style (or the class) file.
➙ The command is defined by the LATEX kernel. Maybe it is even

a plainTEX command that is included in the LATEX kernel.

What has @ll this t@ do with style files?

If we encounter unknown commands (for instance in in style files),
that can have multiple reasons:

➙ The command is defined in another style (or the class) file.
➙ The command is defined by the LATEX kernel. Maybe it is even

a plainTEX command that is included in the LATEX kernel.
➙ The command is a primitive command.

What has @ll this t@ do with style files?

If we encounter unknown commands (for instance in in style files),
that can have multiple reasons:

➙ The command is defined in another style (or the class) file.
➙ The command is defined by the LATEX kernel. Maybe it is even

a plainTEX command that is included in the LATEX kernel.
➙ The command is a primitive command.

If a LATEX book does not explain a certain command, we might have a
chance looking at

➙ the LATEX kernel sources;
➙ books about plainTEX and TEX itself.

The mystery of the @ . . .

LATEX tries to hide a great number of commands from the user.

The mystery of the @ . . .

LATEX tries to hide a great number of commands from the user.
➙ If a command contains an @, it is not accessible in normal

source files, but only in style files.

The mystery of the @ . . .

LATEX tries to hide a great number of commands from the user.
➙ If a command contains an @, it is not accessible in normal

source files, but only in style files.
➙ The author of a style file can in this manner distinguish

between

The mystery of the @ . . .

LATEX tries to hide a great number of commands from the user.
➙ If a command contains an @, it is not accessible in normal

source files, but only in style files.
➙ The author of a style file can in this manner distinguish

between
– internal macros that are only used inside the package

The mystery of the @ . . .

LATEX tries to hide a great number of commands from the user.
➙ If a command contains an @, it is not accessible in normal

source files, but only in style files.
➙ The author of a style file can in this manner distinguish

between
– internal macros that are only used inside the package
– external macros that provide the interface to the package

for a user

The mystery of the @ . . .

LATEX tries to hide a great number of commands from the user.
➙ If a command contains an @, it is not accessible in normal

source files, but only in style files.
➙ The author of a style file can in this manner distinguish

between
– internal macros that are only used inside the package
– external macros that provide the interface to the package

for a user
➙ The LATEX kernel itself defines a huge number of internal

commands that are also used by package authors.

The mystery of the @ . . .

LATEX tries to hide a great number of commands from the user.
➙ If a command contains an @, it is not accessible in normal

source files, but only in style files.
➙ The author of a style file can in this manner distinguish

between
– internal macros that are only used inside the package
– external macros that provide the interface to the package

for a user
➙ The LATEX kernel itself defines a huge number of internal

commands that are also used by package authors.
➙ Note that there is (unfortunately) no namespace management

in LATEX. Internal commands defined in one package are still
visible in all other packages.

The rest of the t@lk

A tour of the tabularx package

The rest of the t@lk

A tour of the tabularx package

➙ The package defines an environment tabularx, which is based
upon tabular. Given a total (target) width, it can compute the
width of one or more columns automatically.

The rest of the t@lk

A tour of the tabularx package

➙ The package defines an environment tabularx, which is based
upon tabular. Given a total (target) width, it can compute the
width of one or more columns automatically.

➙ The package tabularx is not a typical package, because it is
very well documented.

The rest of the t@lk

A tour of the tabularx package

➙ The package defines an environment tabularx, which is based
upon tabular. Given a total (target) width, it can compute the
width of one or more columns automatically.

➙ The package tabularx is not a typical package, because it is
very well documented.

➙ We will review (a part of) the source file page by page.

The rest of the t@lk

A tour of the tabularx package

➙ The package defines an environment tabularx, which is based
upon tabular. Given a total (target) width, it can compute the
width of one or more columns automatically.

➙ The package tabularx is not a typical package, because it is
very well documented.

➙ We will review (a part of) the source file page by page.
➙ We will introduce and discuss new concepts as we encounter

them.

The rest of the t@lk

A tour of the tabularx package

➙ The package defines an environment tabularx, which is based
upon tabular. Given a total (target) width, it can compute the
width of one or more columns automatically.

➙ The package tabularx is not a typical package, because it is
very well documented.

➙ We will review (a part of) the source file page by page.
➙ We will introduce and discuss new concepts as we encounter

them.
➙ We will concentrate on the general ideas and skip many details.

In the @beginning

%%

%% This is file ‘tabularx.sty’,

%% generated with the docstrip utility.

%%

%% The original source files were:

%%

%% tabularx.dtx (with options: ‘package’)

%%

%% This is a generated file.

%%

%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000

%% The LaTeX3 Project and any individual authors listed elsewhere

%% in this file.

[...]

In the @beginning

%%

%% This is file ‘tabularx.sty’,

%% generated with the docstrip utility.

%%

%% The original source files were:

%%

%% tabularx.dtx (with options: ‘package’)

%%

%% This is a generated file.

%%

%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000

%% The LaTeX3 Project and any individual authors listed elsewhere

%% in this file.

[...]

➙ The file starts with commentary, explaining the nature of the
file.

In the @beginning

%%

%% This is file ‘tabularx.sty’,

%% generated with the docstrip utility.

%%

%% The original source files were:

%%

%% tabularx.dtx (with options: ‘package’)

%%

%% This is a generated file.

%%

%% Copyright 1993 1994 1995 1996 1997 1998 1999 2000

%% The LaTeX3 Project and any individual authors listed elsewhere

%% in this file.

[...]

➙ The file starts with commentary, explaining the nature of the
file.

➙ Obviously, this file has been generated from yet another file,
namely tabularx.dtx, with the help of a mysterious tool
called docstrip.

tabularx.dtx

The phil@s@phy of literate programming

The phil@s@phy of literate programming

➙ Knuth himself favored a style of programming where the
program documents itself.

The phil@s@phy of literate programming

➙ Knuth himself favored a style of programming where the
program documents itself.

➙ The program code is embedded in a file which can be typeset
by TEX, yielding a nicely typeset version of the program code
together with its documentation.

The phil@s@phy of literate programming

➙ Knuth himself favored a style of programming where the
program documents itself.

➙ The program code is embedded in a file which can be typeset
by TEX, yielding a nicely typeset version of the program code
together with its documentation.

docstrip – literate programming in LATEX

➙ The docstrip utility (written in LATEX!) has been designed in
this spirit, to allow LATEX package writers to use literate
programming.

The phil@s@phy of literate programming

➙ Knuth himself favored a style of programming where the
program documents itself.

➙ The program code is embedded in a file which can be typeset
by TEX, yielding a nicely typeset version of the program code
together with its documentation.

docstrip – literate programming in LATEX

➙ The docstrip utility (written in LATEX!) has been designed in
this spirit, to allow LATEX package writers to use literate
programming.

➙ A central source file (with extension .dtx) contains
documentation as well as all the program code.

The phil@s@phy of literate programming

➙ Knuth himself favored a style of programming where the
program documents itself.

➙ The program code is embedded in a file which can be typeset
by TEX, yielding a nicely typeset version of the program code
together with its documentation.

docstrip – literate programming in LATEX

➙ The docstrip utility (written in LATEX!) has been designed in
this spirit, to allow LATEX package writers to use literate
programming.

➙ A central source file (with extension .dtx) contains
documentation as well as all the program code.

➙ LATEX can be run on the .dtx to generate the package
documentation.

The phil@s@phy of literate programming

➙ Knuth himself favored a style of programming where the
program documents itself.

➙ The program code is embedded in a file which can be typeset
by TEX, yielding a nicely typeset version of the program code
together with its documentation.

docstrip – literate programming in LATEX

➙ The docstrip utility (written in LATEX!) has been designed in
this spirit, to allow LATEX package writers to use literate
programming.

➙ A central source file (with extension .dtx) contains
documentation as well as all the program code.

➙ LATEX can be run on the .dtx to generate the package
documentation.

➙ The docstrip utility can be run on the .dtx to extract all the
program code, i.e. to produce the .sty file.

Pr@ctical information about docstrip

➙ If you download a package (for instance from CTAN), you
often get just two files: an installation script .ins, and the
literate source .dtx.

➙ Run LATEX on the .ins file. This will call docstrip on the .dtx
to generate all the needed source files, among them the .sty
style file.

➙ Run LATEX on the .dtx file directly to generate the
documentation.

➙ The docstrip program is documented in the LATEX companion.

The interf@ce of the package

We skip the license and the copyright. The package’s author is
David Carlisle, who wrote a great number of excellent packages and
participates actively in the development of the LATEX kernel.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{tabularx}

[1999/01/07 v2.07 ‘tabularx’ package (DPC)]

\DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

\DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

\ProcessOptions

\RequirePackage{array}[1994/02/03]

LATEX provides a limited amount of package and version
management:

The interf@ce of the package

We skip the license and the copyright. The package’s author is
David Carlisle, who wrote a great number of excellent packages and
participates actively in the development of the LATEX kernel.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{tabularx}

[1999/01/07 v2.07 ‘tabularx’ package (DPC)]

\DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

\DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

\ProcessOptions

\RequirePackage{array}[1994/02/03]

LATEX provides a limited amount of package and version
management:

➙ NeedsTeXFormat states that the package requires the current
LATEX version LATEX 2ε and will not work with older versions of
LATEX.

The interf@ce of the package

We skip the license and the copyright. The package’s author is
David Carlisle, who wrote a great number of excellent packages and
participates actively in the development of the LATEX kernel.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{tabularx}

[1999/01/07 v2.07 ‘tabularx’ package (DPC)]

\DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

\DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

\ProcessOptions

\RequirePackage{array}[1994/02/03]

LATEX provides a limited amount of package and version
management:

➙ ProvidesPackage is used to give the name of the package and
version information.

The interf@ce of the package

We skip the license and the copyright. The package’s author is
David Carlisle, who wrote a great number of excellent packages and
participates actively in the development of the LATEX kernel.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{tabularx}

[1999/01/07 v2.07 ‘tabularx’ package (DPC)]

\DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

\DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

\ProcessOptions

\RequirePackage{array}[1994/02/03]

LATEX provides a limited amount of package and version
management:

➙ DeclareOption can be used to declare options that can be
passed to the package in square brackets to activate or
deactivate specific functionality.

The interf@ce of the package

We skip the license and the copyright. The package’s author is
David Carlisle, who wrote a great number of excellent packages and
participates actively in the development of the LATEX kernel.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{tabularx}

[1999/01/07 v2.07 ‘tabularx’ package (DPC)]

\DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

\DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

\ProcessOptions

\RequirePackage{array}[1994/02/03]

LATEX provides a limited amount of package and version
management:

➙ ProcessOptions is needed to really parse the options passed to
the package and execute the appropriate commands.

The interf@ce of the package

We skip the license and the copyright. The package’s author is
David Carlisle, who wrote a great number of excellent packages and
participates actively in the development of the LATEX kernel.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{tabularx}

[1999/01/07 v2.07 ‘tabularx’ package (DPC)]

\DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

\DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

\ProcessOptions

\RequirePackage{array}[1994/02/03]

LATEX provides a limited amount of package and version
management:

➙ RequirePackage is the package writer’s version of
\usepackage. It loads a package, but only if it has not yet been
loaded.

The interf@ce of the package

We skip the license and the copyright. The package’s author is
David Carlisle, who wrote a great number of excellent packages and
participates actively in the development of the LATEX kernel.

\NeedsTeXFormat{LaTeX2e}

\ProvidesPackage{tabularx}

[1999/01/07 v2.07 ‘tabularx’ package (DPC)]

\DeclareOption{infoshow}{\AtEndOfPackage\tracingtabularx}

\DeclareOption{debugshow}{\AtEndOfPackage\tracingtabularx}

\ProcessOptions

\RequirePackage{array}[1994/02/03]

LATEX provides a limited amount of package and version
management:

➙ AtEndOfPackage can be used to store a command for execution
at the end of the package.
Question: Why not execute it here?

Reserving@ registers

\newdimen\TX@col@width

\newdimen\TX@old@table

\newdimen\TX@old@col

\newdimen\TX@target

\newdimen\TX@delta

\newcount\TX@cols

\newif\ifTX@

TEX has so-called registers, slots in memory for values of a certain
number of datatypes:

Reserving@ registers

\newdimen\TX@col@width

\newdimen\TX@old@table

\newdimen\TX@old@col

\newdimen\TX@target

\newdimen\TX@delta

\newcount\TX@cols

\newif\ifTX@

TEX has so-called registers, slots in memory for values of a certain
number of datatypes:

➙ newdimen allocates a dimension register. It can store a
numerical value plus a unit, for example a length or a width.
Valid values would be 1em or 7.3cm.

Reserving@ registers

\newdimen\TX@col@width

\newdimen\TX@old@table

\newdimen\TX@old@col

\newdimen\TX@target

\newdimen\TX@delta

\newcount\TX@cols

\newif\ifTX@

TEX has so-called registers, slots in memory for values of a certain
number of datatypes:

➙ newcount allocates a counter register. It can store a (possibly
negative) integer value, such as -2 or 7. Possible applications
would be counters for the current page number, or the current
chapter number.

Reserving@ registers

\newdimen\TX@col@width

\newdimen\TX@old@table

\newdimen\TX@old@col

\newdimen\TX@target

\newdimen\TX@delta

\newcount\TX@cols

\newif\ifTX@

TEX has so-called registers, slots in memory for values of a certain
number of datatypes:

➙ newif allocates a boolean. It can only store true or false.
Decisions can be made depending on the current value of the
boolean.

Reserving@ registers

\newdimen\TX@col@width

\newdimen\TX@old@table

\newdimen\TX@old@col

\newdimen\TX@target

\newdimen\TX@delta

\newcount\TX@cols

\newif\ifTX@

TEX has so-called registers, slots in memory for values of a certain
number of datatypes:

➙ There are more: \newtoks allocates a token register. It can
store a number of words from the input stream. We will hear
more about those later.

Reserving@ registers

\newdimen\TX@col@width

\newdimen\TX@old@table

\newdimen\TX@old@col

\newdimen\TX@target

\newdimen\TX@delta

\newcount\TX@cols

\newif\ifTX@

TEX has so-called registers, slots in memory for values of a certain
number of datatypes:

➙ \newbox allocates a box register. Boxes can contain portions of
typeset text. They can be measured.

Reserving@ registers

\newdimen\TX@col@width

\newdimen\TX@old@table

\newdimen\TX@old@col

\newdimen\TX@target

\newdimen\TX@delta

\newcount\TX@cols

\newif\ifTX@

TEX has so-called registers, slots in memory for values of a certain
number of datatypes:

➙ \newskip allocates a new skip register. Skips are similar to
dimensions, but can contain stretchable and/or shrinkable
glue. We will not need them.

➙ There are yet more that we do not need: \newmuskip for
mathematical skips, \newread and \newwrite for file
input/output, \newfam for math families, and \newlanguage
for hyphenation rules.

The re@l w@rk begins

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

The re@l w@rk begins

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

The plan

The re@l w@rk begins

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

The plan

➙ On encountering a tabularx environment, scan the input until
the end of the environment.

The re@l w@rk begins

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

The plan

➙ On encountering a tabularx environment, scan the input until
the end of the environment.

➙ Store the contents of the environment somewhere for later use
(in a token register).

The re@l w@rk begins

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

The plan

➙ On encountering a tabularx environment, scan the input until
the end of the environment.

➙ Store the contents of the environment somewhere for later use
(in a token register).

➙ Do several trial runs to determine the width of the X columns.

The re@l w@rk begins

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

The plan

➙ On encountering a tabularx environment, scan the input until
the end of the environment.

➙ Store the contents of the environment somewhere for later use
(in a token register).

➙ Do several trial runs to determine the width of the X columns.
➙ Typeset the environment with the computed column widths.

Definiti@ns with \def?
➙ In LATEX, new commands are defined using \newcommand.
➙ \newcommand is defined in the LATEX kernel.
➙ \def is the TEX primitive to define new commands.
➙ \newcommand uses \def internally.

Definiti@ns with \def?
➙ In LATEX, new commands are defined using \newcommand.
➙ \newcommand is defined in the LATEX kernel.
➙ \def is the TEX primitive to define new commands.
➙ \newcommand uses \def internally.

The definition

\newcommand{\MyCommand}[n]{replacement text using #1 to #n}

corresponds (more or less) to

\def\MyCommand#1#2...#n{replacement text using #1 to #n}

Definiti@ns with \def?
➙ In LATEX, new commands are defined using \newcommand.
➙ \newcommand is defined in the LATEX kernel.
➙ \def is the TEX primitive to define new commands.
➙ \newcommand uses \def internally.

The definition

\newcommand{\MyCommand}[n]{replacement text using #1 to #n}

corresponds (more or less) to

\def\MyCommand#1#2...#n{replacement text using #1 to #n}

Therefore

\def\tabularx#1{%

is not much different from

\newcommand{\tabularx}[1]{%

A brief l@@k at the definition of \newcommand
\def\newcommand{\@star@or@long\new@command}

\def\new@command#1{%

\@testopt{\@newcommand#1}0}

\def\@newcommand#1[#2]{%

\@ifnextchar [{\@xargdef#1[#2]}{\@argdef#1[#2]}}

\long\def\@argdef#1[#2]#3{%

\@ifdefinable #1{\@yargdef#1\@ne{#2}{#3}}}

\long \def \@yargdef #1#2#3{%

\ifx#2\tw@

\def\reserved@b##11{[####1]}%

\else

\let\reserved@b\@gobble

\fi

\expandafter

\@yargd@f \expandafter{\number #3}#1}

\long \def \@yargd@f#1#2{%

\def \reserved@a ##1#1##2##{%

\expandafter\def\expandafter#2\reserved@b ##1#1}%

\l@ngrel@x \reserved@a 0##1##2##3##4##5##6##7##8##9###1}

Who can find the relevant occurrence of \def?

A brief l@@k at the definition of \newcommand
\def\newcommand{\@star@or@long\new@command}

\def\new@command#1{%

\@testopt{\@newcommand#1}0}

\def\@newcommand#1[#2]{%

\@ifnextchar [{\@xargdef#1[#2]}{\@argdef#1[#2]}}

\long\def\@argdef#1[#2]#3{%

\@ifdefinable #1{\@yargdef#1\@ne{#2}{#3}}}

\long \def \@yargdef #1#2#3{%

\ifx#2\tw@

\def\reserved@b##11{[####1]}%

\else

\let\reserved@b\@gobble

\fi

\expandafter

\@yargd@f \expandafter{\number #3}#1}

\long \def \@yargd@f#1#2{%

\def \reserved@a ##1#1##2##{%

\expandafter\def\expandafter#2\reserved@b ##1#1}%

\l@ngrel@x \reserved@a 0##1##2##3##4##5##6##7##8##9###1}

Who can find the relevant occurrence of \def? There it is!

Where to find th@t?

Where to find th@t?

Look in the sources

If you know approximately where the command comes from, you
can check the sources directly. For instance, \newcommand is defined
in the file ltdefns.dtx. One can also look in the typeset version of
the kernel sources, source2e.ps.

ltdefns.dtx
source2e.ps

Where to find th@t?

Look in the sources

If you know approximately where the command comes from, you
can check the sources directly. For instance, \newcommand is defined
in the file ltdefns.dtx. One can also look in the typeset version of
the kernel sources, source2e.ps.

Use \show

TEX provides the primitive command \show. You can ask for the
definition of a command with \show (but you won’t get any
documentation).

ltdefns.dtx
source2e.ps

Envir@nments in LATEX

➙ Similar to command definitions, LATEX knows environments.
➙ Environments can be defined with

\newenvironment{name}{code at beginning}{code at end}

➙ They can be used in blocks of the form

\begin{name}

[...]

\end{name}

Envir@nments in LATEX

➙ Similar to command definitions, LATEX knows environments.
➙ Environments can be defined with

\newenvironment{name}{code at beginning}{code at end}

➙ They can be used in blocks of the form

\begin{name}

[...]

\end{name}

➙ Internally, \newenvironment{name} defines two commands
\name and \endname . These are executed by \begin and \end.

Envir@nments in LATEX

➙ Similar to command definitions, LATEX knows environments.
➙ Environments can be defined with

\newenvironment{name}{code at beginning}{code at end}

➙ They can be used in blocks of the form

\begin{name}

[...]

\end{name}

➙ Internally, \newenvironment{name} defines two commands
\name and \endname . These are executed by \begin and \end.

➙ The environment we are currently in is always available via
the internal LATEX command \@currenvir.

Envir@nments in LATEX

➙ Similar to command definitions, LATEX knows environments.
➙ Environments can be defined with

\newenvironment{name}{code at beginning}{code at end}

➙ They can be used in blocks of the form

\begin{name}

[...]

\end{name}

➙ Internally, \newenvironment{name} defines two commands
\name and \endname . These are executed by \begin and \end.

➙ The environment we are currently in is always available via
the internal LATEX command \@currenvir.

Now let’s have another look at the tabularx sources . . .

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ With \tabularx, the beginning of the tabularx environment is

defined!

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ This occurrence of \endtabularx has oviously something to do

with the end of the environment (although we don’t know yet
what \let does).

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ Here, the name of the current environment is stored (although

we don’t know yet what \edef does).

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ This is completely strange (and, in fact, a very dirty trick which

is described in the TEXbook).

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ The tabularx environment gets as argument the desired total

width of the table. This width is stored in a dimension register.

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ We print something to the log, using a command later defined

in tabularx.sty.

tabularx.sty

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ Here, we initialise a globally predefined token register (it is

defined in the LATEX kernel) to the empty token list.

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:
➙ This calls the command that continues the work.

Another l@@k

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We know a bit more now:

But first more about \def, \edef, and \let . . .

About m@cros and expansion

An example

\begin{enumerate}

\item We save the current environment in a new command.

\newcommand{\envsave}{\@currenvir}

\item And now print it:

\begin{center}

\envsave

\end{center}

\end{enumerate}

Question: What do think will be the result?

About m@cros and expansion

An example

\begin{enumerate}

\item We save the current environment in a new command.

\newcommand{\envsave}{\@currenvir}

\item And now print it:

\begin{center}

\envsave

\end{center}

\end{enumerate}

Question: What do think will be the result? Answer:

1. We save the current environment in a new command.

2. And now print it:

center

About m@cros and expansion

An example

\begin{enumerate}

\item We save the current environment in a new command.

\def\envsave{\@currenvir}

\item And now print it:

\begin{center}

\envsave

\end{center}

\end{enumerate}

Replacing \newcommand by \def does not change anything:

1. We save the current environment in a new command.

2. And now print it:

center

About m@cros and expansion

An example

\begin{enumerate}

\item We save the current environment in a new command.

\edef\envsave{\@currenvir}

\item And now print it:

\begin{center}

\envsave

\end{center}

\end{enumerate}

But using \edef does change a lot:

1. We save the current environment in a new command.

2. And now print it:

enumerate

To expand or n@t to expand

➙ \def defines a macro. The replacement text is stored as is, and
inserted at the position where the macro is called.

➙ This replacement is called expanding the macro.
➙ \edef\name first expands its argument as completely as

possible (say, to result and the defines \name to expand to
result directly.

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

\MyCommand

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: \MyCommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: \Mycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: \Mycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: \Mycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: \Mycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: \Mycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: More: \Mycommand\xspace\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: More: \Mycommand\xspace\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: More: More: \Mycommand\xspace\xspace\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: More: More: \Mycommand\xspace\xspace\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: More: More: More: \Mycommand\xspace\xspace\xspace\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 1: Naı̈ve redefinition

\newcommand{\MyCommand}{something}

\renewcommand{\MyCommand}{More: \MyCommand\xspace}

Won’t work! This is what happens if \MyCommand is expanded:

More: More: More: More: \Mycommand\xspace\xspace\xspace\xspace

TEX runs out of memory . . .

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 2: Using \edef

Will work sometimes, but not in general. Assume

\newcommand{\MyCommand}{%

\addtocounter{equation}{1} and some text}

\edef{\MyCommand}{More: \MyCommand\xspace}

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 2: Using \edef

Will work sometimes, but not in general. Assume

\newcommand{\MyCommand}{%

\addtocounter{equation}{1} and some text}

\edef{\MyCommand}{More: \MyCommand\xspace}

The execution of \edef will fail because \addtocounter (being an
assignment to a register) cannot (and should not) be completely
expanded.

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

\MyCommand

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

More: \OldMyCommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

More: \OldMycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

More: \OldMycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

More: \OldMycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

More: \OldMycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

More: \OldMycommand\xspace

H@w to redefine a command
➙ Easy, you say! Take \renewcommand (or just use \def again).
➙ But what if we want to use the old meaning (i.e. expansion) of

the command in defining the new?

Attempt 3: Using \let

With \let, we can introduce an alias for the current expansion of a
command (which is exactly what we need here).

\newcommand{\MyCommand}{something}

\let\OldMyCommand\MyCommand % save meaning of MyCommand

\renewcommand{\MyCommand}{%

More: \OldMyCommand\xspace} % use saved meaning

Now the expansion runs as expected:

More: something\xspace

Yet an@ther look

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We can almost completely understand the code now:

Yet an@ther look

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We can almost completely understand the code now:
➙ At the beginning of a tabularx environment, we first save the

current environment name in macro TX@. Isn’t that always
tabularx? Not necessarily (exercise).

Yet an@ther look

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We can almost completely understand the code now:
➙ This was the dirty trick. Let’s just say that it opens a group.

Yet an@ther look

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We can almost completely understand the code now:
➙ We store the target length in a register for further use.

Yet an@ther look

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We can almost completely understand the code now:
➙ We print some debugging information.

Yet an@ther look

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We can almost completely understand the code now:
➙ We initialise a token register to the empty list and continue

with \TX@get@body.

Yet an@ther look

\def\tabularx#1{%

\edef\TX@{\@currenvir}%

{\ifnum0=‘}\fi

\setlength\TX@target{#1}%

\TX@typeout{Target width: #1 = \the\TX@target.}%

\toks@{}\TX@get@body}

\let\endtabularx\relax

We can almost completely understand the code now:
➙ We let the end-part of the two environment-related macros

mean the same as \relax, which is a TEX primitive that does
(almost) nothing.

Sc@nning the contents

The next thing that is accomplished in the tabularx style is that the
contents of the environment are scanned and saved.
\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

Again, first the plan

➙ We scan until the next occurrence of \end in the input.
➙ We add the tokens to the register so far.
➙ If the \end ends the tabularx, we are done and can then try to

typeset the table.
➙ If the \end ends some other (nested) environment, we have to

repeat the procedure.

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ \long modifies \def; arguments to the defined macro may
then span multiple paragraphs

➙ \newcommand always uses \long\def, but \newcommand* uses
plain \def.

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ \def has another interesting feature: You can specify
delimiters for macro arguments.

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ \def has another interesting feature: You can specify
delimiters for macro arguments.

➙ Normally, an argument is either grouped with { and } or
consists just of a single token. Here, it extends until the next
\end in the input stream.

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ \def has another interesting feature: You can specify
delimiters for macro arguments.

➙ Normally, an argument is either grouped with { and } or
consists just of a single token. Here, it extends until the next
\end in the input stream.

➙ The \end itself will not be part of the argument.

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ For multiple arguments one can have multiple delimiters.

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ For multiple arguments one can have multiple delimiters.

\def\MyRemark#1.#2\End{%

\noindent\textbf{#1.}\quad #2 \hfill\bullet\par}

\MyRemark Nota bene. \TeX’s macro definition construct

is extremely powerful.\End

will result in
Nota bene. TEX’s macro definition construct is extremely
powerful. •

M@re about \def

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ In normal documents, use of \def is discouraged.
\newcommand is safer in many ways, and using delimiters will
decrease readability, especially for other readers.

More about exp@nsi@n

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

More about exp@nsi@n

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ \toks@ is a token register. We already know that.

More about exp@nsi@n

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ \toks@ is a token register. We already know that.
➙ We can assign something to that token register by saying

\toks@{something}

The tokens in something are then saved in the register.

More about exp@nsi@n

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ \toks@ is a token register. We already know that.
➙ We can assign something to that token register by saying

\toks@{something}

The tokens in something are then saved in the register.
➙ The contents of a token register can be used with

\the\toks@

(In fact, also other register contents can be used this way, with
the help of \the.)

More about exp@nsi@n

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ If we just look at the highlighted part, we can read off the
intention.

More about exp@nsi@n

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ If we just look at the highlighted part, we can read off the
intention.

➙ The macro argument #1 (i.e. all the tokens until the next \end)
should be appended to the previous contents of \toks@.

More about exp@nsi@n

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

➙ If we just look at the highlighted part, we can read off the
intention.

➙ The macro argument #1 (i.e. all the tokens until the next \end)
should be appended to the previous contents of \toks@.

➙ But we have an expansion problem again, similar to the
situation where we needed \edef. But \edef is not an option
here, because there is no definition. But \expandafter helps . . .

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ \toks@ is processed by TEX.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ \toks@ is processed by TEX.
➙ Being recognised as a token register, TEX expects a { next to

start a token list.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ \expandafter isn’t a {. Therefore TEX starts expanding.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ \expandafter isn’t a {. Therefore TEX starts expanding.
➙ \expandafter tells TEX to skip the next token, expand the

following token once, then continue with the skipped token.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ The { is skipped (but not discarded!) because of \expandafter.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ The \the is expanded.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ The \the is expanded.
➙ The primitive command \the expects a register next, so it

looks ahead.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@\expandafter{\the\toks@ brand new}

➙ The register \toks@ is found, so \the\toks@ expands to the
current contents of \toks@.

Ch@nging the order of expansion

Let us investigate how the assignment to the token register is
processed by TEX:

\toks@{terribly old brand new}

➙ The register \toks@ is found, so \the\toks@ expands to the
current contents of \toks@.

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ We want to check if we have already found the \end that ends
the tabularx environment.

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ We consume the next argument from the input stream. After
the end we expect the name of an environment.

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ We consume the next argument from the input stream. After
the end we expect the name of an environment.

➙ This name is stored in a temporary command \@tempa.

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ The primitive command \ifx compares the two commands
\@tempa and \TX@.

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ The primitive command \ifx compares the two commands
\@tempa and \TX@.

➙ If they have the same expansion, everything up to the next
\else is executed, i. e. we call yet another command
\TX@endtabularx.

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ The primitive command \ifx compares the two commands
\@tempa and \TX@.

➙ If they are not equal in that sense, everything between the
\else and the \fi is executed . . .

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ The primitive command \ifx compares the two commands
\@tempa and \TX@.

➙ If they are not equal in that sense, everything between the
\else and the \fi is executed . . . We first add the \end
command for the other environment to the token register.

Finding the end@

\long\def\TX@get@body#1\end

{\toks@\expandafter{\the\toks@#1}\TX@find@end}

\def\TX@find@end#1{%

\def\@tempa{#1}%

\ifx\@tempa\TX@\expandafter\TX@endtabularx

\else\toks@\expandafter

{\the\toks@\end{#1}}\expandafter\TX@get@body\fi}

➙ The primitive command \ifx compares the two commands
\@tempa and \TX@.

➙ If they are not equal in that sense, everything between the
\else and the \fi is executed . . . We first add the \end
command for the other environment to the token register. The
we loop and scan to the next \end (the \expandafter gets rid
of the \fi).

C@nditionals in TEX

TEX knows a family of conditional operators that all work the same
way:

\ifsomething condition

things to be done if true

\else

things to be done if false

\fi

C@nditionals in TEX

TEX knows a family of conditional operators that all work the same
way:

\ifsomething condition

things to be done if true

\else

things to be done if false

\fi

Some of them are:

C@nditionals in TEX

TEX knows a family of conditional operators that all work the same
way:

\ifsomething condition

things to be done if true

\else

things to be done if false

\fi

Some of them are:
➙ \ifx compares the (one-step) expansions of two commands

C@nditionals in TEX

TEX knows a family of conditional operators that all work the same
way:

\ifsomething condition

things to be done if true

\else

things to be done if false

\fi

Some of them are:
➙ \ifx compares the (one-step) expansions of two commands
➙ \ifnum compares two integers

C@nditionals in TEX

TEX knows a family of conditional operators that all work the same
way:

\ifsomething condition

things to be done if true

\else

things to be done if false

\fi

Some of them are:
➙ \ifx compares the (one-step) expansions of two commands
➙ \ifnum compares two integers
➙ \ifdim compares two dimensions

C@nditionals in TEX

TEX knows a family of conditional operators that all work the same
way:

\ifsomething condition

things to be done if true

\else

things to be done if false

\fi

Some of them are:
➙ \ifx compares the (one-step) expansions of two commands
➙ \ifnum compares two integers
➙ \ifdim compares two dimensions
➙ \if compares two characters

Flying thr@ugh the rest

\def\TX@endtabularx{%

\expandafter\TX@newcol\expandafter{\tabularxcolumn{\TX@col@width}}%

\let\verb\TX@verb

\def\@elt##1{\global\value{##1}\the\value{##1}\relax}%

\edef\TX@ckpt{\cl@@ckpt}%

\let\@elt\relax

\TX@old@table\maxdimen

\TX@col@width\TX@target

\global\TX@cols\@ne

\TX@typeout@

{\@spaces Table Width\@spaces Column Width\@spaces X Columns}%

\TX@trial{\def\NC@rewrite@X{%

\global\advance\TX@cols\@ne\NC@find p{\TX@col@width}}}%

[...]

Flying thr@ugh the rest

[...]

\loop

\TX@arith

\ifTX@

\TX@trial{}%

\repeat

{\let\@footnotetext\TX@ftntext\let\@xfootnotenext\TX@xftntext

\csname tabular*\expandafter\endcsname\expandafter\TX@target

\the\toks@

\csname endtabular*\endcsname}%

\global\TX@ftn\expandafter{\expandafter}\the\TX@ftn

\ifnum0=‘{\fi}%

\expandafter\end\expandafter{\TX@}}

Conclusions

Conclusions

If you want to, you can

Conclusions

If you want to, you can
– but you don’t have to . . .

