
Programming with Universes, Generically

Andres Löh

Well-Typed LLP

24 January 2012

An introduction to Agda

Agda

I Functional programming language
I Static types
I Dependent types
I Pure (explicit effects)
I Total (mostly)

I Actively developed at Chalmers University
I Ulf Norell and many others
I Written in Haskell

Agda

I Functional programming language
I Static types
I Dependent types
I Pure (explicit effects)
I Total (mostly)

I Actively developed at Chalmers University
I Ulf Norell and many others
I Written in Haskell

Simple Agda

Superficially looks a bit like Haskell:

data N : Set where
zero : N
suc : N→ N
+ : N→ N→ N

zero + n = n
suc m + n = suc (m + n)

Simple Agda

Superficially looks a bit like Haskell:

data List (A : Set) : Set where
[] : List A
:: : A→ List A→ List A

map : {A B : Set} → (A→ B)→ List A→ List B
map f [] = []
map f (x :: xs) = f x :: map f xs

Dependent types

Types can depend on terms:

data Vec (A : Set) : N→ Set where
[] : Vec A zero
:: : {n : N} → A→ Vec A n→ Vec A (suc n)

++ : {A : Set} {m n : N} →
Vec A m→ Vec A n→ Vec A (m + n)

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

I Computation during type-checking
I When are two types equal?

Dependent types

Types can depend on terms:

data Vec (A : Set) : N→ Set where
[] : Vec A zero
:: : {n : N} → A→ Vec A n→ Vec A (suc n)

++ : {A : Set} {m n : N} →
Vec A m→ Vec A n→ Vec A (m + n)

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

I Computation during type-checking
I When are two types equal?

Type equality

Are these equal?

Vec N (2 + 2)
Vec N 4

And these?

Vec N (n + 1)
Vec N (1 + n)

Simple rule: types are reduced according to their definitions as
far as possible and then checked for (alpha-)equality.

I 2 + 2 reduces to 4 , so the first two are equal.

I n + 1 is stuck, because + is defined by induction on
the first argument. The second two are not equal.

Type equality

Are these equal?

Vec N (2 + 2)
Vec N 4

And these?

Vec N (n + 1)
Vec N (1 + n)

Simple rule: types are reduced according to their definitions as
far as possible and then checked for (alpha-)equality.

I 2 + 2 reduces to 4 , so the first two are equal.

I n + 1 is stuck, because + is defined by induction on
the first argument. The second two are not equal.

Type equality

Are these equal?

Vec N (2 + 2)
Vec N 4

And these?

Vec N (n + 1)
Vec N (1 + n)

Simple rule: types are reduced according to their definitions as
far as possible and then checked for (alpha-)equality.

I 2 + 2 reduces to 4 , so the first two are equal.

I n + 1 is stuck, because + is defined by induction on
the first argument. The second two are not equal.

Type equality

Are these equal?

Vec N (2 + 2)
Vec N 4

And these?

Vec N (n + 1)
Vec N (1 + n)

Simple rule: types are reduced according to their definitions as
far as possible and then checked for (alpha-)equality.

I 2 + 2 reduces to 4 , so the first two are equal.

I n + 1 is stuck, because + is defined by induction on
the first argument. The second two are not equal.

Type equality

Are these equal?

Vec N (2 + 2)
Vec N 4

And these?

Vec N (n + 1)
Vec N (1 + n)

Simple rule: types are reduced according to their definitions as
far as possible and then checked for (alpha-)equality.

I 2 + 2 reduces to 4 , so the first two are equal.

I n + 1 is stuck, because + is defined by induction on
the first argument. The second two are not equal.

Programs and Proofs

Totality

Function in Agda are supposed to be total:
I defined on all inputs,
I terminating.

So, despite computation on the type level, type checking is
decidable.

Totality

Function in Agda are supposed to be total:
I defined on all inputs,
I terminating.

So, despite computation on the type level, type checking is
decidable.

Enforcing totality

Relatively simple (but conservative) checks:
I Case distinctions have to be exhaustive.
I Recursion only on structurally smaller terms.
I Datatypes must be strictly positive.

Consequence: Agda has uninhabited types!

data ⊥ : Set where

No constructors, thus no way to construct values of type ⊥ .

Whereas in Haskell:

loop :: forall a. a
loop x = x

Enforcing totality

Relatively simple (but conservative) checks:
I Case distinctions have to be exhaustive.
I Recursion only on structurally smaller terms.
I Datatypes must be strictly positive.

Consequence: Agda has uninhabited types!

data ⊥ : Set where

No constructors, thus no way to construct values of type ⊥ .

Whereas in Haskell:

loop :: forall a. a
loop x = x

Curry-Howard isomorphism

Agda becomes interesting as a logic.

property type
proof program

truth inhabited type
falsity uninhabited type
conjunction pair
disjunction union type
implication function
negation function to the uninhabited type
universal quantification dependent function
existential quantification dependent pair

Curry-Howard isomorphism

Agda becomes interesting as a logic.

property type
proof program

truth inhabited type
falsity uninhabited type
conjunction pair
disjunction union type
implication function
negation function to the uninhabited type

universal quantification dependent function
existential quantification dependent pair

Curry-Howard isomorphism

Agda becomes interesting as a logic.

property type
proof program

truth inhabited type
falsity uninhabited type
conjunction pair
disjunction union type
implication function
negation function to the uninhabited type
universal quantification dependent function
existential quantification dependent pair

A type representing equality

data ≡ {A : Set} : A→ A→ Set where
refl : {x : A} → x ≡ x

The value refl is a witness that two terms of type A are
actually equal.

Where Agda’s built-in (definitional) equality isn’t enough, we
can explicitly prove (and use) equality using ≡ .

A type representing equality

data ≡ {A : Set} : A→ A→ Set where
refl : {x : A} → x ≡ x

The value refl is a witness that two terms of type A are
actually equal.

Where Agda’s built-in (definitional) equality isn’t enough, we
can explicitly prove (and use) equality using ≡ .

Programming is proving

Equality is a congruence:

cong : {A B : Set} {x y : A} →
(f : A→ B)→ x ≡ y→ f x ≡ f y

cong f refl = refl

Zero is a right-unit of addition:

example : (n : N)→ (n + zero) ≡ n
example zero = refl
example (suc n) = cong suc (example n)

Proofs are easier to do interactively.

Programming is proving

Equality is a congruence:

cong : {A B : Set} {x y : A} →
(f : A→ B)→ x ≡ y→ f x ≡ f y

cong f refl = refl

Zero is a right-unit of addition:

example : (n : N)→ (n + zero) ≡ n
example zero = refl
example (suc n) = cong suc (example n)

Proofs are easier to do interactively.

Programming is proving

Equality is a congruence:

cong : {A B : Set} {x y : A} →
(f : A→ B)→ x ≡ y→ f x ≡ f y

cong f refl = refl

Zero is a right-unit of addition:

example : (n : N)→ (n + zero) ≡ n
example zero = refl
example (suc n) = cong suc (example n)

Proofs are easier to do interactively.

Dependently typed programming

I Programming with data that maintains complex invariants,
verified by the type checker.

I Stating and proving properties about programs within the
program, using the same language.

I Using precise types to guide the programming process.

Datatype-genericity

Reuse vs. type safety

Types make things different.

They sometimes seem to stand in the way of code reuse.

A lot of this tension is already addressed by polymorphism,
which now corresponds to universal quantification.

But what if we want different (but related) behaviour for different
types?

Reuse vs. type safety

Types make things different.

They sometimes seem to stand in the way of code reuse.

A lot of this tension is already addressed by polymorphism,
which now corresponds to universal quantification.

But what if we want different (but related) behaviour for different
types?

Datatype-generic programs

Datatype-generic programs allow you to inspect the structure
of datatypes while defining a function.

Classic examples:
I structural equality, structural ordering
I serialization, deserialization
I parsing, pretty-printing
I mapping, traversing, transforming, querying

Datatype-generic programs

Datatype-generic programs allow you to inspect the structure
of datatypes while defining a function.

Classic examples:
I structural equality, structural ordering
I serialization, deserialization
I parsing, pretty-printing
I mapping, traversing, transforming, querying

Historical context

I Active research topic since about 15 years.
I A lot of promising approaches, many based on Haskell.
I Related to OO design patterns such as Visitor and Iterator,

but also to techniques such as model-driven design.
I Related to meta-programming, but with the goal to be

type-safe.
I Historically required significant language extensions or a

preprocessor.
I Advances in FP type systems have made it possible to

develop datatype-generic programs (nearly) directly in
Haskell.

I Dependent types are even more powerful than current
Haskell, so DGP in Agda should be easy . . .

Universes

Universe

A universe is a type of codes together with an interpretation
function that computes types from codes:

Code : Set
J K : Code→ Set

We cannot inspect types directly.

But we can inspect codes!

A (datatype-)generic function is a function defined by
induction on the codes:

gf : (C : Code)→ . . . J C K . . .

Universe

A universe is a type of codes together with an interpretation
function that computes types from codes:

Code : Set
J K : Code→ Set

We cannot inspect types directly.

But we can inspect codes!

A (datatype-)generic function is a function defined by
induction on the codes:

gf : (C : Code)→ . . . J C K . . .

A simple example

We have already seen a universe.

data Vec (A : Set) : N→ Set where
[] : Vec A zero
:: : {n : N} → A→ Vec A n→ Vec A (suc n)

Here, N are the codes, and Vec is an A -indexed family of
interpretation functions.

Thus ++ is a generic function on this universe.

A simple example

We have already seen a universe.

data Vec (A : Set) : N→ Set where
[] : Vec A zero
:: : {n : N} → A→ Vec A n→ Vec A (suc n)

Here, N are the codes, and Vec is an A -indexed family of
interpretation functions.

Thus ++ is a generic function on this universe.

A simple example

We have already seen a universe.

data Vec (A : Set) : N→ Set where
[] : Vec A zero
:: : {n : N} → A→ Vec A n→ Vec A (suc n)

Here, N are the codes, and Vec is an A -indexed family of
interpretation functions.

Thus ++ is a generic function on this universe.

A different way to define the vector universe

Again, we use N as type of codes.

Vec : (A : Set)→ N→ Set
Vec A zero = >
Vec A (suc n) = A × Vec A n

Another interpetation for natural numbers

With Fin , we define the family of finite types:

Fin : N→ Set
Fin zero = ⊥
Fin (suc n) = >] Fin n

Safe lookup:

lookup : {A : Set} → (n : N)→ Fin n→ Vec A n→ A
lookup zero ()
lookup (suc n) (inj1 tt) (x , xs) = x
lookup (suc n) (inj2 i) (x , xs) = lookup n i xs

Another interpetation for natural numbers

With Fin , we define the family of finite types:

Fin : N→ Set
Fin zero = ⊥
Fin (suc n) = >] Fin n

Safe lookup:

lookup : {A : Set} → (n : N)→ Fin n→ Vec A n→ A
lookup zero ()
lookup (suc n) (inj1 tt) (x , xs) = x
lookup (suc n) (inj2 i) (x , xs) = lookup n i xs

Another definition for finite types

Finite types are closed under union and cartesian product:

data Code : Set where
c0 : Code
c1 : Code
⊕ : Code→ Code→ Code
⊗ : Code→ Code→ Code

J K : Code→ Set
J c0 K = ⊥
J c1 K = >
J C ⊕ D K = J C K] J D K
J C ⊗ D K = J C K × J D K

Generic equality on finite types

= = : (C : Code)→ J C K→ J C K→ Bool
= = c0 () ()

= = c1 tt tt = true
= = (C ⊕ D) (inj1 x1) (inj1 x2) = = = C x1 x2
= = (C ⊕ D) (inj2 y1) (inj2 y2) = = = D y1 y2
= = (C ⊕ D) = false
= = (C ⊗ D) (x1 , y1) (x2 , y2) = = = C x1 x2 ∧ = = D y1 y2

Relations between universes

size : Code→ N
size c0 = 0
size c1 = 1
size (C ⊕ D) = size C + size D
size (C ⊗ D) = size C ∗ size D

We can prove (in Agda) that the two definitions of finite types
are related:

fromFin : (n : N)→ Fin n→ J natCode n K
toFin : (C : Code)→ J C K→ Fin (size C)
toFromId : {n : N} (i : Fin n)→

i ≡ toFin (natCode n) (fromFin i)

Adding recursion

A universe for polynomial functors:

data Code : Set where
c0 : Code
c1 : Code
⊕ : Code→ Code→ Code
⊗ : Code→ Code→ Code

rec : Code

We interpret codes as type constructors now:

J K : Code→ Set→ Set
J c0 K X = ⊥
J c1 K X = >
J C ⊕ D K X = J C K X] J D K X
J C ⊗ D K X = J C K X × J D K X
J rec K X = X

Mapping over functors

We traverse the structure, only modifying parameter positions:

map : {X Y : Set} → (C : Code)→
(X→ Y)→ J C K X→ J C K Y

map c0 f ()
map c1 f tt = tt
map (C ⊕ D) f (inj1 x) = inj1 (map C f x)
map (C ⊕ D) f (inj2 y) = inj2 (map D f y)
map (C ⊗ D) f (x , y) = map C f x ,map D f y
map rec f x = f x

Taking fixed points

We plug in the data structure itself for the parameter position:

data µ (C : Code) : Set where
〈 〉 : J C K (µ C)→ µ C

Example: Binary trees.

BinTree : Set
BinTree = µ (c1 ⊕ (rec ⊗ rec))
leaf : BinTree
leaf = 〈 inj1 tt 〉
true : BinTree→ BinTree→ BinTree
true l r = 〈 inj2 (l , r) 〉

Taking fixed points

We plug in the data structure itself for the parameter position:

data µ (C : Code) : Set where
〈 〉 : J C K (µ C)→ µ C

Example: Binary trees.

BinTree : Set
BinTree = µ (c1 ⊕ (rec ⊗ rec))
leaf : BinTree
leaf = 〈 inj1 tt 〉
true : BinTree→ BinTree→ BinTree
true l r = 〈 inj2 (l , r) 〉

Generically traversing a recursive structure

cata : {C : Code} {X : Set} → (J C K X→ X)→ µ C→ X
cata {C} φ 〈 x 〉 = φ (map C (cata φ) x)

height : BinTree→ N
height = cata [const 0 , λ (x , y)→ 1 + max x y]

What’s next?

Many approaches that have been tried in Haskell over the years
are similar to the one we have just seen:

I regular library
I PolyP adds a parameter slot (so we can model lists,

labelled trees, etc.)
I multirec library adds an index to the rec constructor, so

that we can define fixed points of mutually recursive types

Agda helps us:
I to relate and understand all these approaches,
I to generalize even further,
I to prove properties of the resulting generic functions.

What’s next?

Many approaches that have been tried in Haskell over the years
are similar to the one we have just seen:

I regular library
I PolyP adds a parameter slot (so we can model lists,

labelled trees, etc.)
I multirec library adds an index to the rec constructor, so

that we can define fixed points of mutually recursive types

Agda helps us:
I to relate and understand all these approaches,
I to generalize even further,
I to prove properties of the resulting generic functions.

How many universes do we need?

Without dependent types (Haskell):
I Defining one universe is ok, but mapping between

universes is infeasible.
I We have to decide which representation we want to use.
I But the choice is difficult.
I Simple universes represent less types but allow more

functions to be defined.
With Agda, we do not have to decide:

I We can define functions generically over a “suitable”
universe.

I We can change representations as needed.
I Ideally, we’d model the complete data construct as a

universe (levitation).

Programming generically within Agda

Dependent types encourage us to make more distinctions than
we are used to make:

I lists,
I vectors,
I sorted lists,
I lists with an even number of elements,
I lists containing only even numbers.

All of these become different types, yet we still want to perform
similar operations.

More generic tools

We need more generic tools and special-purpose universes.
Examples:

I Many list-like structures can be represented as reflexive
transitive closures of suitable binary relations.

I We can relate unconstrained data structures such as lists
to constrained data structures such as vectors by a generic
process called algebraic ornamentation.

Conclusions

I Datatype-generic programming allows code to be reused
more often.

I Generic functions are very abstract, but the types help
you to write them.

I The stronger the type system, the more important (but
also the easier) generic programming becomes.

I With dependent types, generic programming is just
(ordinary) programming.

I Developing dependently typed generic programs is fun.

Thanks for listening – Questions?

